

Biochemistry and SPR workshop

Wednesday 29th March

GST pull-down

SPR – CM5 chemistry

 Store at 4°C – allow to equilibrate at room temperature for ~30 min before opening to prevent condensation

Ligand capture

- Using a CM5 surface and EDC/NHS chemistry
- Between 10 to 50 μg/mL is a good starting [ligand]
- Did the following dilutions:

Protein	[Stock] mg/mL	Dilution
aGFPnano-GST	13.5	1 uL per mL for 13.5 ug/mL
GST	8.2	1.5 uL per mL for 12.3 ug/mL

• Diluted the proteins in 10 mM Sodium Acetate pH 5.0 for the ligand capture

Ligand pre-concentration

Preconcentration

pH_(buffer) < pl_(ligand) Ligand has **positive** charge

No Preconcentration

pH_(buffer) > pl_(ligand) Ligand has **negative** charge

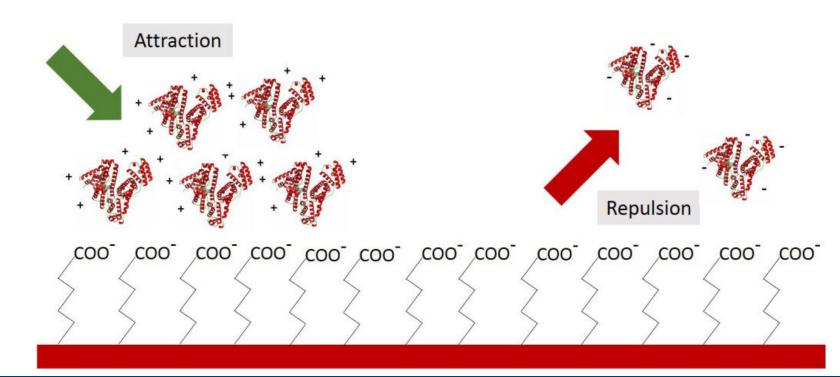


Image: https://nicoyalife.com/blog/spr-tips/save-protein-samples-preconcentration-surface-plasmon-resonance/

SPR: Flow cell set-up

FC1 - GST

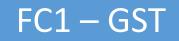
FC2 – antiGFPnano-GST

FC3 – unused



FC2 – antiGFPnano-GST

FC3 – unused



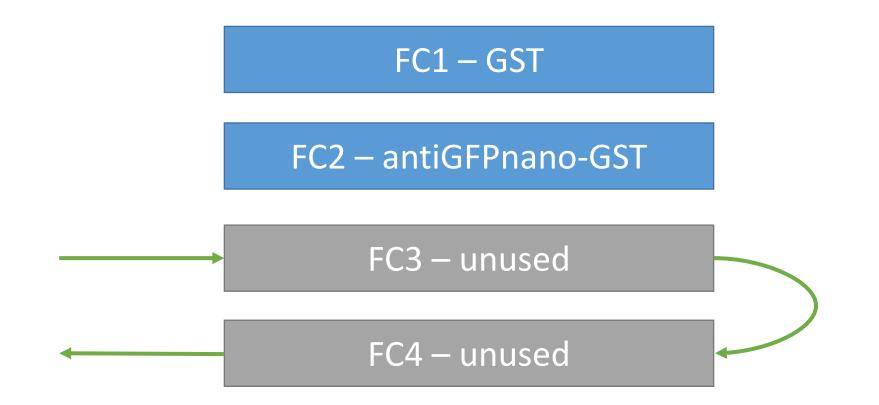
FC2 – antiGFPnano-GST

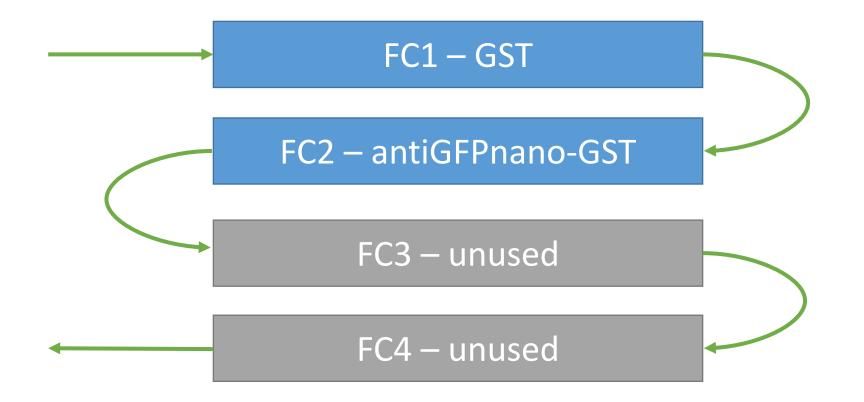
FC3 – unused

FC2 – antiGFPnano-GST

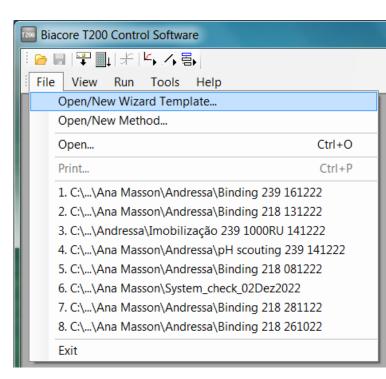
FC3 – unused

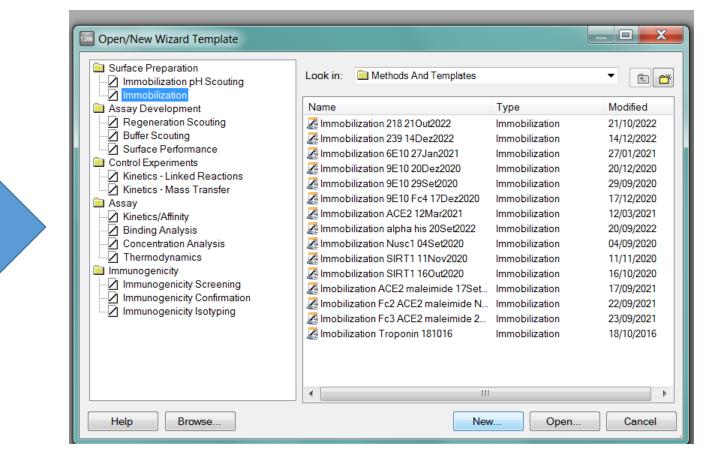
FC2 – antiGFPnano-GST


FC3 – unused



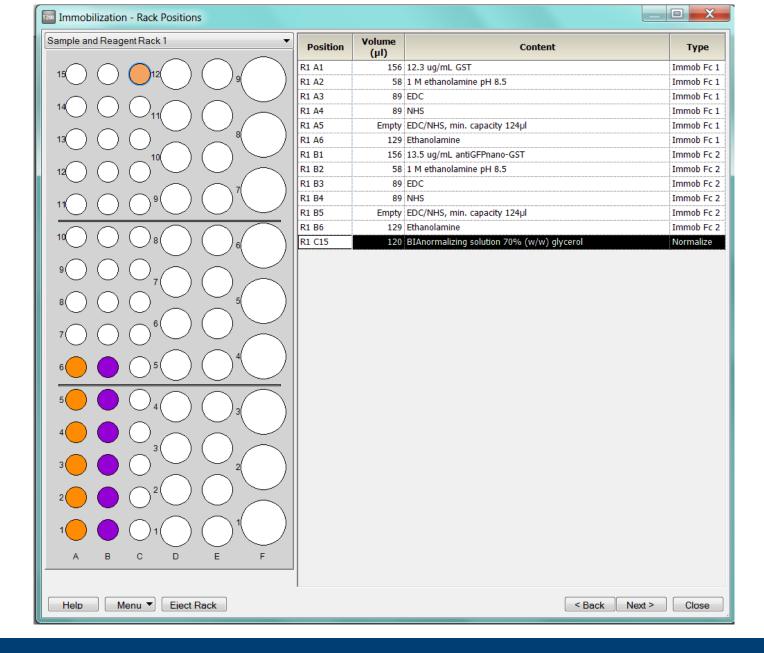
FC3 – unused





Ligand capture – setting up the experiment

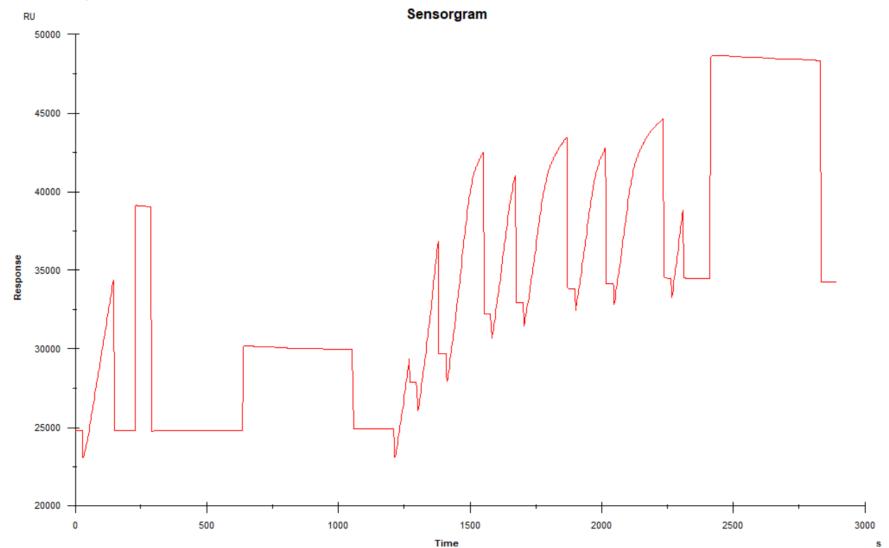
Immobilization - Immobilization Setup	
Chip CM5	•
Flow cells per cycle: 1	•
Flow cell 1	
Immobilize flow cell 1	Method: Amine
Aim for immobilized level	Ligand: 12.3 ug/mL GST Dilute ligand
Specify contact time and flow rate	Target level: 10000 (RU) Wash solution: 1 M ethanolamine pH 8.5
Blank immobilization	
Flow cell 2	
Immobilize flow cell 2	Method: Amine
Aim for immobilized level	Ligand: 13.5 ug/mL antiGFPnano-GST Dilute ligand
Specify contact time and flow rate	Target level: 10000 (RU) Wash solution: 1 M ethanolamine pH 8.5
Blank immobilization	
Flow cell 3	
	Method: Amine
Aim for immobilized level	Ligand: Dilute ligand
	Contact time: 420 (s) Flow rate: 10 (µl/min)
Blank immobilization	
Flow cell 4	
Immobilize flow cell 4	Method: Amine
Aim for immobilized level	Ligand: Dilute ligand
Specify contact time and flow rate	Contact time: 420 (s) Flow rate: 10 (µl/min)
Blank immobilization	
Help Custom Methods	<back next=""> Close</back>

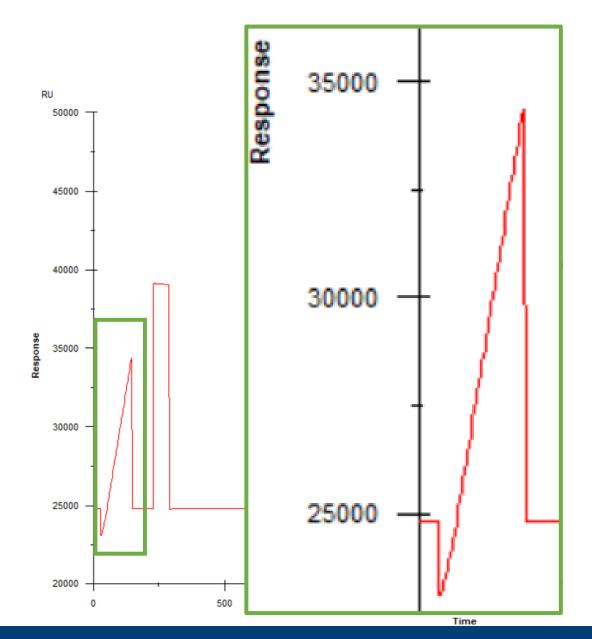


Immobilization - Immobilization Setup	X
Chip CM5	▼
Flow cells per cycle: 1	•
Flow cell 1	
Immobilize flow cell 1	Method: Amine
Aim for immobilized level	Ligand: 12.3 ug/mL GST Dilute ligand
Specify contact time and flow rate	Target level: 10000 (RU) Wash solution: 1 M ethanolamine pH 8.5
Blank immobilization	
Flow cell 2	
Immobilize flow cell 2	Method: Amine
Aim for immobilized level	Ligand: 13.5 ug/mL antiGFPnano-GST Dilute ligand
Specify contact time and flow rate	Target level: 10000 (RU) Wash solution: 1 M ethanolamine pH 8.5
Blank immobilization	
Flow cell 3	
Immobilize flow cell 3	Method: Amine
Aim for immobilized level	Ligand: Dilute ligand
Specify contact time and flow rate	
Blank immobilization	
Flow cell 4	
Immobilize flow cell 4	Method: Amine
Aim for immobilized level	Ligand: Dilute ligand
Specify contact time and flow rate	
 Blank immobilization 	
Help Custom Methods	<back next=""> Close</back>

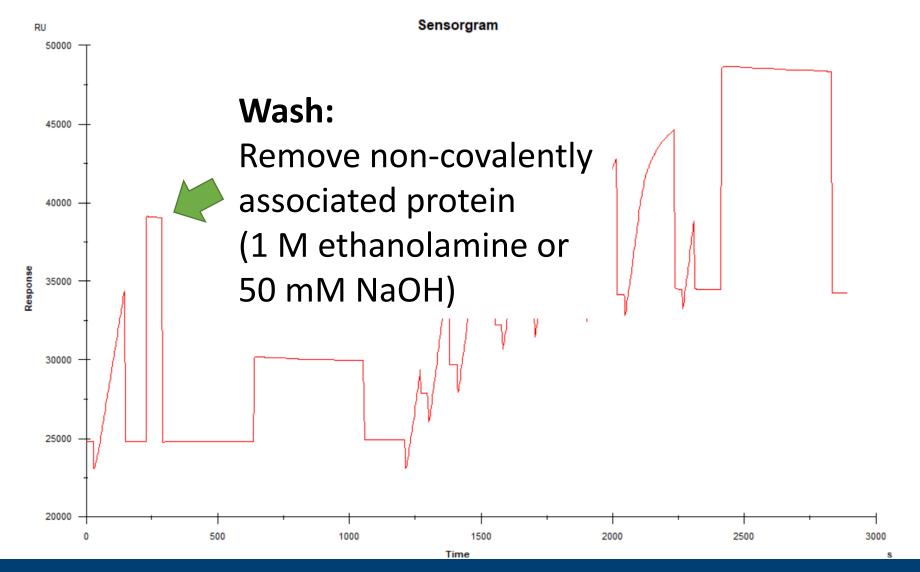
Immobilization - System Preparations	X
Prime before runNormalize detector	
Temperature settings	
Analysis temperature:	25 (°C)
Sample compartment temperature:	25 (°C)
Help	< Back Next > Close

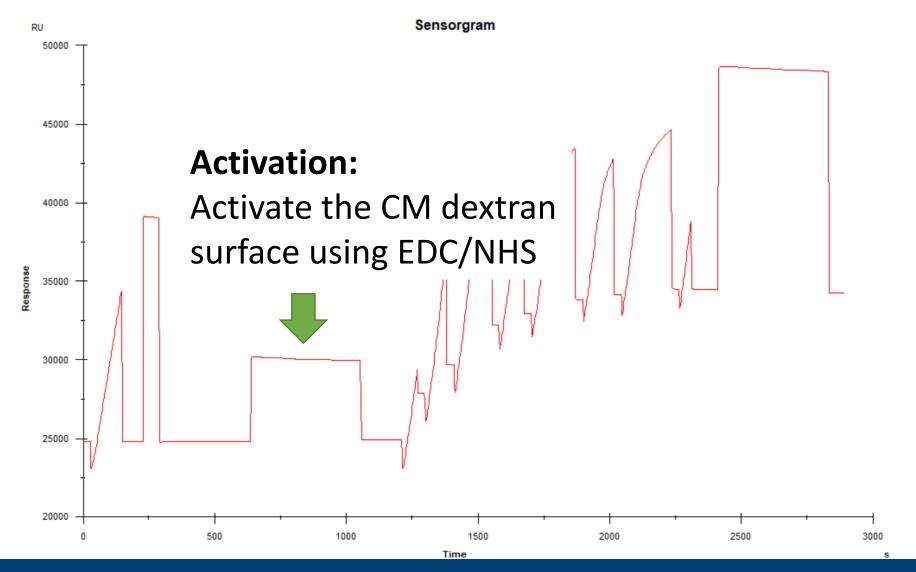
Important: Only need to normalise the detector for a new flow-cell once, don't re-normalise again after you have captured ligand.



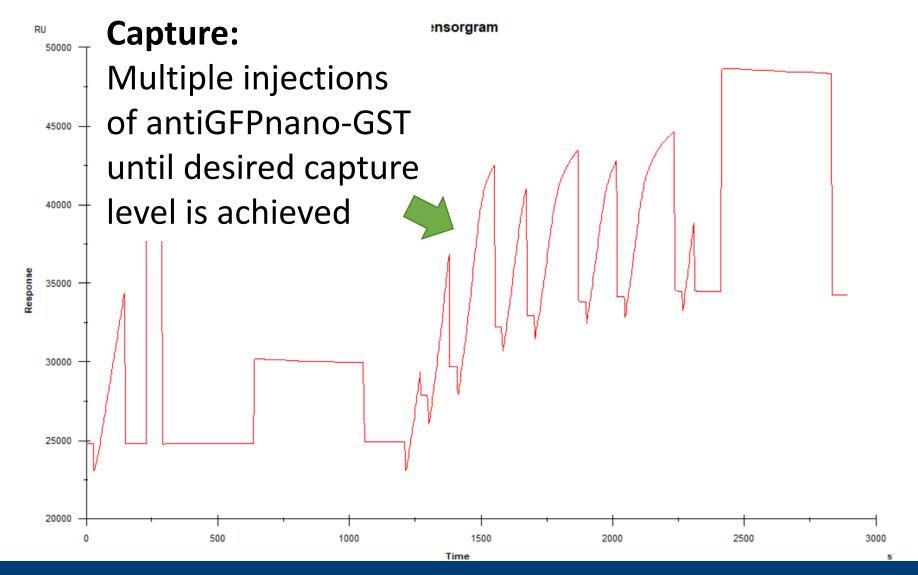

Immobilization - Prepare Run Protocol					
Tahoma • 10 • B I U					
 Prepare Run Protocol Make sure the correct sensor chip is docked. Make sure all samples & reagents are loaded in the rack and microplate according to setup. (Vials should be sealed with rubber caps and microplate with adhesive foil.) Place the buffer(s) on the left hand tray and insert the correct tubing(s), see below. Note! Standby after run will use buffer A. Make sure there is fresh water in the water bottle on the right hand tray. If necessary, empty the waste bottle before start of the run. 	the Rack Positions				
Estimated run time: 1 h 8 min (excluding conditional statements, temperature changes and standby flow)					
Estimated buffer consumption:					
Running buffer At least 100 ml plus 65 ml/day for standby after run	Not in use				
Help Menu 🔻	< Back				

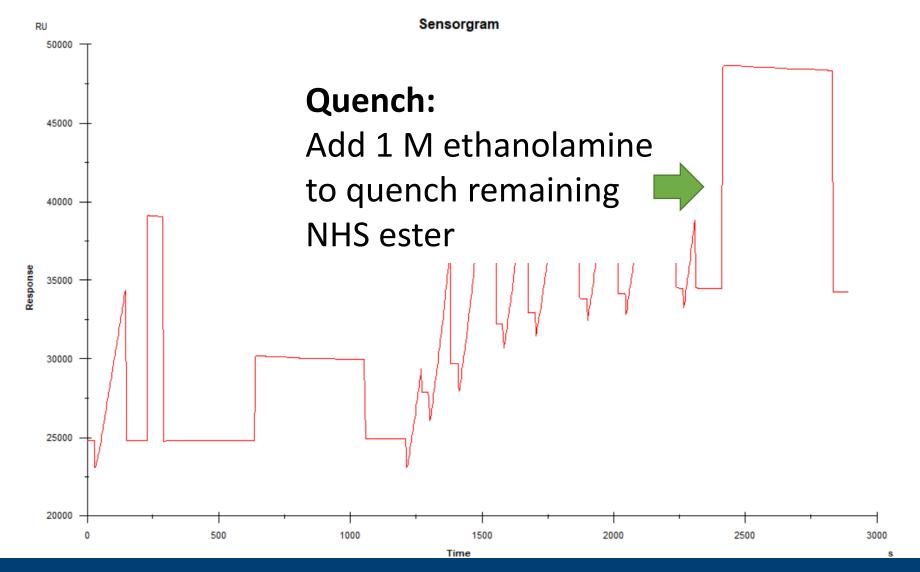
Ligand capture – FC2 (antiGFPnano-GST)

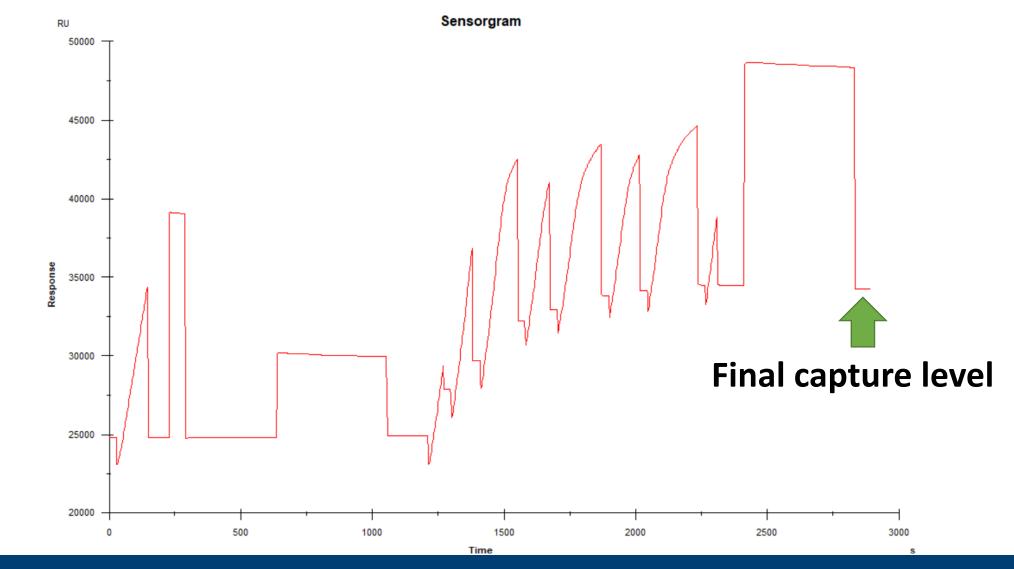


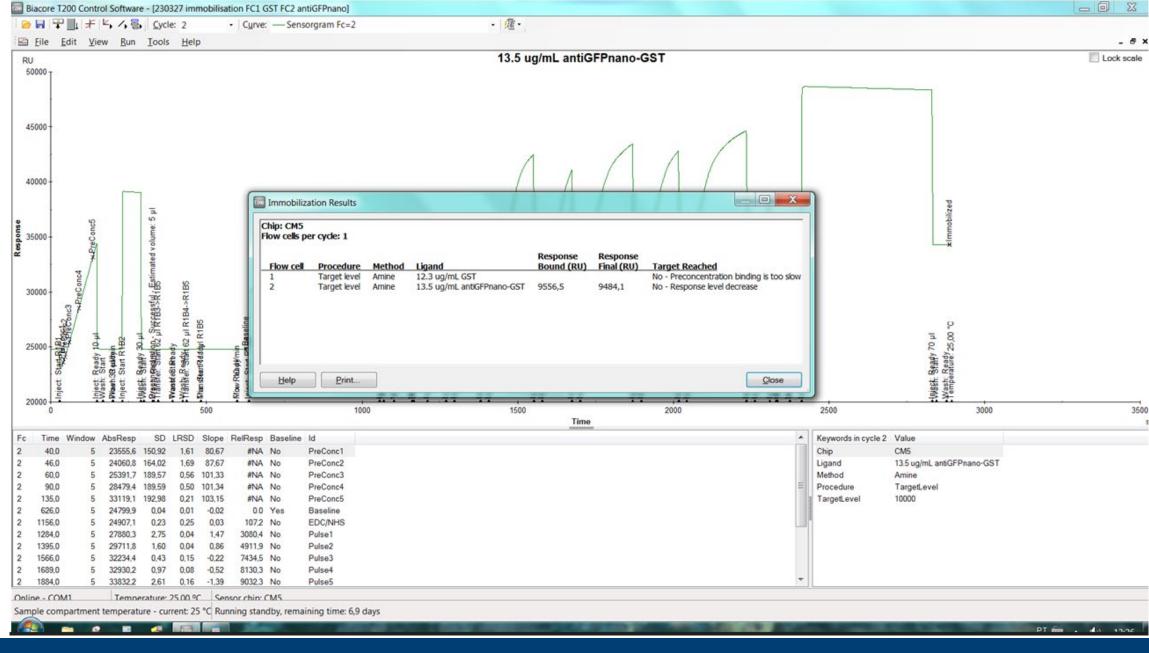

Pre-concentration:

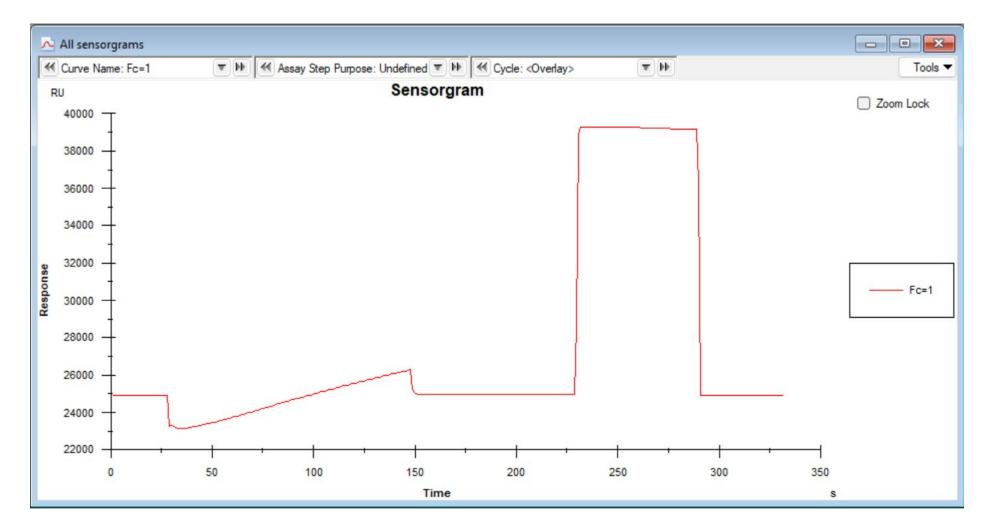
Protein is non-covalently accumulating in the carbodymethyldextran surface (ionic interaction)

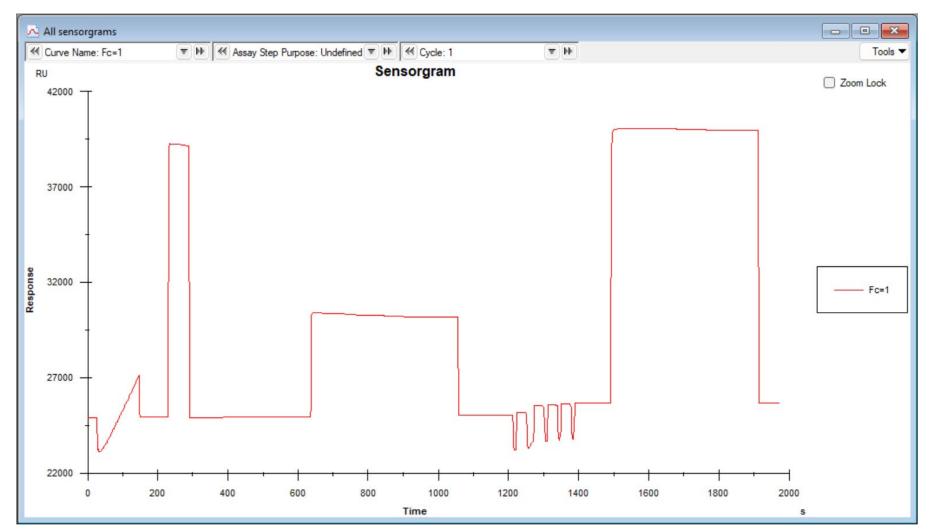




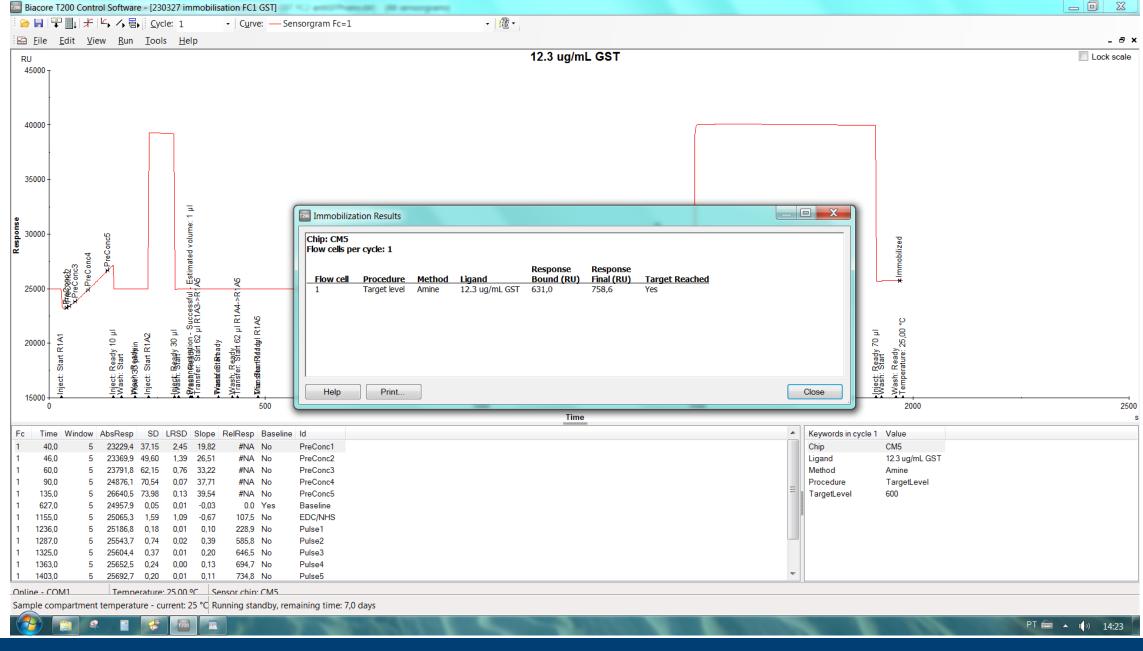




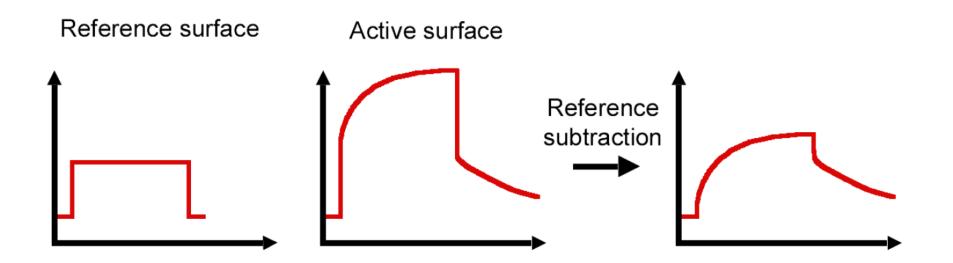


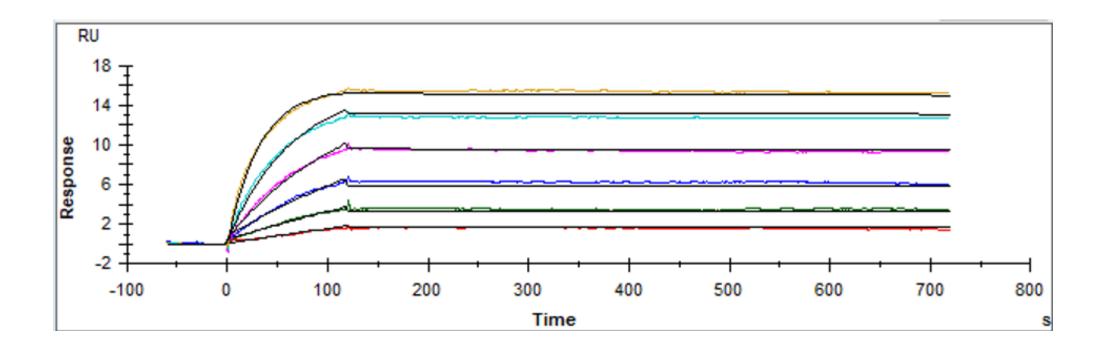


GST ligand capture



GST ligand capture - repeat



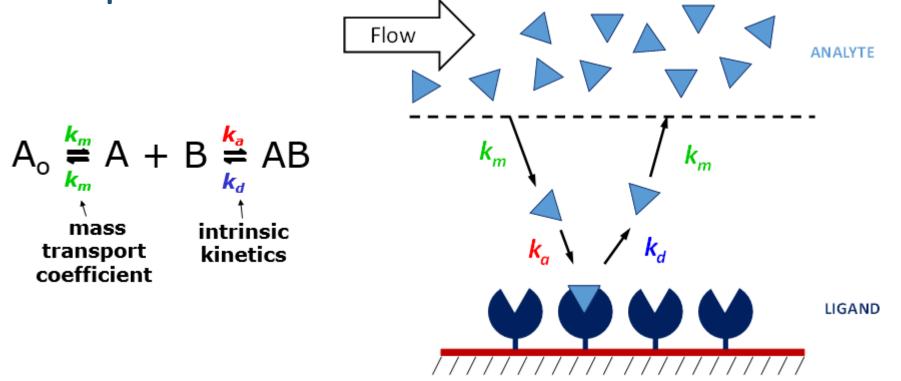

Why use a mock flow cell? Reference subtraction

- Changing the buffer in the flow cell changes the refractive index, which changes the SPR signal
- Subtract reference (mock) signal from experimental signal when injecting analytes

How much ligand should I capture?

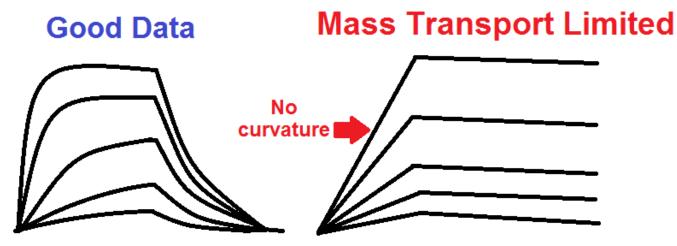
- R_{max} = amount if signal (RU) if all ligand sites are occupied by analyte
 - Relative signal, so baseline (0) is the surface before injection of analyte

How much ligand should I capture?


- For good kinetics experiments, you want R_{max} to be as low as possible to still get good signal
 - Minimise mass transport and rebinding
 - Minimise aggregation and steric hindrance

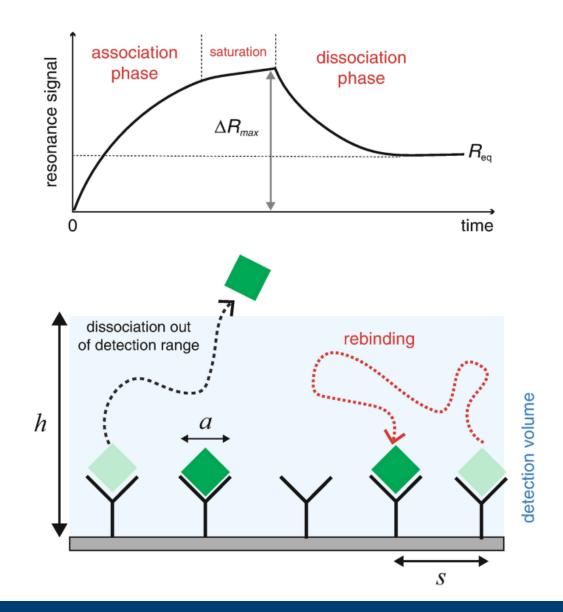
 $R_{max} = \frac{analyte MW}{ligand MW} \times immobilized amount \times stoichiometric ratio$

- For protein interactions, aim for ~50-150
 - For small molecule interactions, aim for as low at 10!


Mass transport

- If the diffusion of analyte into the CM matrix is slower than the association, you will get local depletion of the analyte
 - Mass transport limited association

Dealing with mass transport

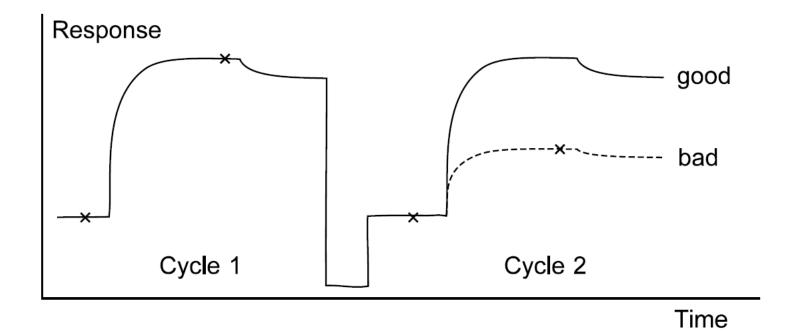


- Increase flow rate
 - Flow rate at edge of flow cell is lower than in centre
 - Higher flow rate consumes more analyte
- Decrease ligand capture
- Use mass transport corrected fitting model
 - Better to avoid the problem than correct the data, if possible!

Rebinding

- During dissociation, analyte re-binds to ligands on the surface rather than flowing away
- No longer see exponential decay of analyte during dissociation phase
 - Incorrect calculation of the dissociation rate constant
- Avoid by using high flow rates and low [ligand]

How much ligand did we capture?


 $R_{max} = \frac{analyte MW}{ligand MW} \times immobilized amount \times stoichiometric ratio$

- For flow cell 2 (antiGFPnano-GST):
 - MW_{analyte} = 26 kDa (approx. for EGFP)
 - MW_{ligand} = 39.2 kDa
 - Immobilised amount = 9500
 - Stoichiometric ratio = 1
 - **R**_{max} ≈ 6300 RU
- You'll see later that our R_{max} is much lower...why??

Regeneration

• Aim to remove all of the analyte from the surface, while not damaging any of the ligand

Regeneration

Type of bond	Acidic	Basic	Hydrophobic	lonic
Strength				
	pH > 2.5	pH < 9	рН < 9	
Weak	HCI	10 mM HEPES/NaOH	50 % ethylene glycol	1 M NaCl
Weak	10 mM Glycine/HCl	10 mM Glycine/HCl		INNACI
	pH 2-2.5	pH 9-10	pH 9-10	
	formic acid	NaOH	50 % ethylene glycol	
Intermediate	HCI	10 mM Glycine/NaOH		2 M MgCl ₂
	10 mM Glycine/HCl			
	H ₃ PO ₄			
	pH < 2	pH > 10	pH > 10	
	formic acid	NaOH	25-50 % ethylene glycol	
Strong	HCI	6 M guanidinechloride		4 M MgCl ₂
	10 mM Glycine/HCl			
	H ₃ PO ₄			

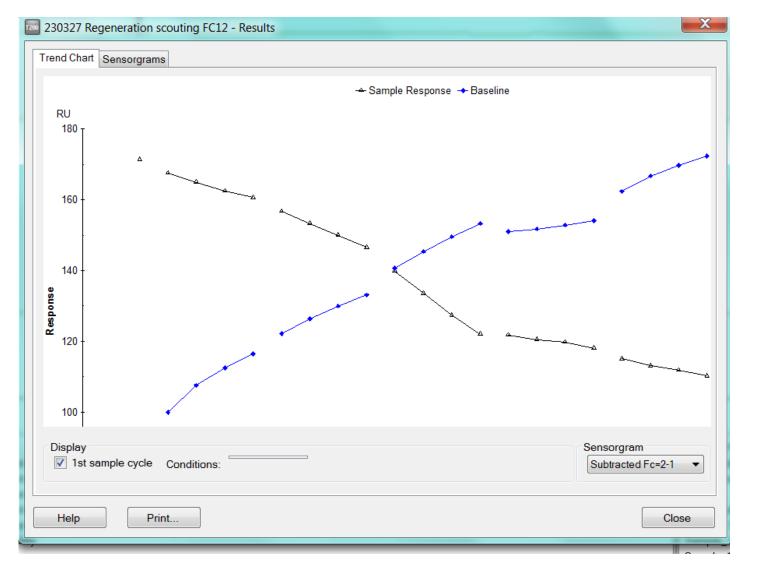
Regeneration scouting

- Aim to discover optimal regeneration conditions
 - For antibody:antigen interactions low pH glycine is a good choice
- First attempt:
 - 10 mM Glycine pH 2.2 for 20 s
 - 10 mM Glycine pH 2.1 for 20 s
 - 10 mM Glycine pH 2.0 for 20 s
 - 100 mM Glycine pH 2.0 for 5 s
 - 100 mM Glycine pH 2.0 for 15 s
- Analyte was 10 nM EGFP
 - Use a relatively high concentration of analyte for good sensitivity

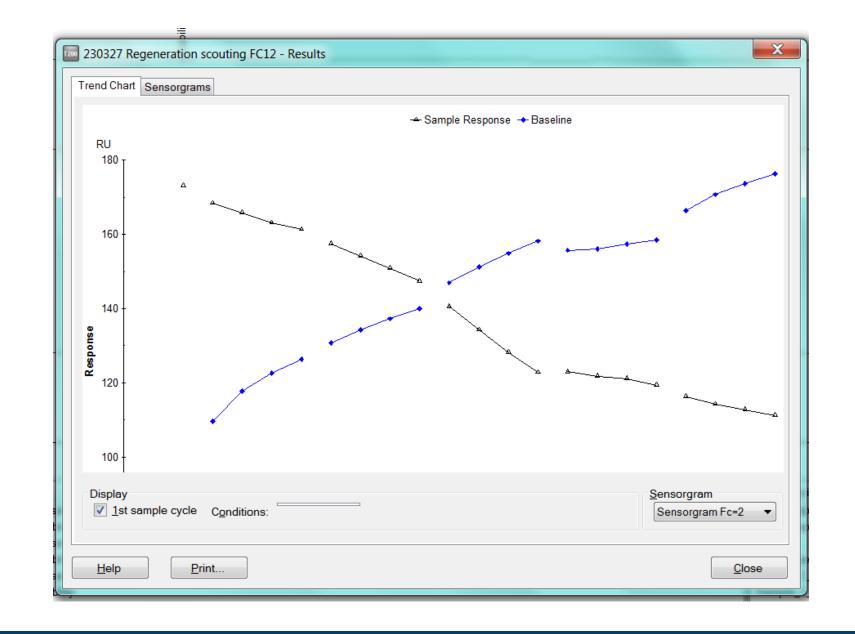
Flow path: 2-1	Chip type: CM5	
SAMPLE REGENERATION 1	 Ligand capture Sample Enhancement 	
	Regeneration 1	

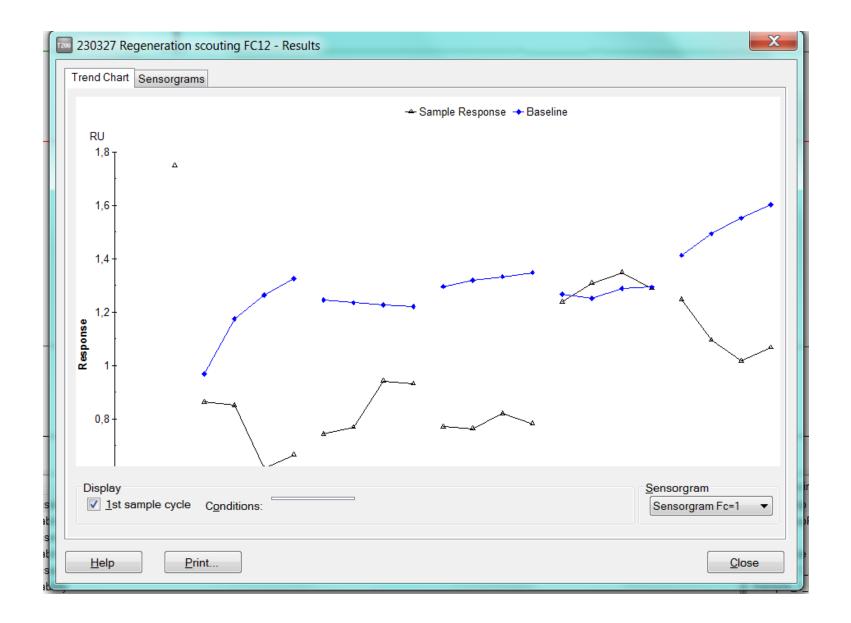
	Regeneration Scouting - Setup
H	Conditioning
L	Run conditioning cycle
1	Solution:
1	Contact time: (s) Number of injections:
l	Startup
	✓ One startup cycle will be run with buffer for all pulses
	Help < Back Next > Close

	ಹೆಸ್ಟ್ ಹೆಸ್ಟ್ ಹೆ.	a igi igi igi igi igi igi igi igi igi ig
	Regeneration Scouting - Experimental Parameters	X
	Regeneration parameters	
	Flow rate: (µl/min)	
	Stabilization period: 60 (s	
	High viscosity solution:	
Regeneration Scouting - Injection Parameters		
Sample	Experimental design	
Solution: 10 nM GFP	Number of conditions: 5	Lock: Solutions
Contact time: 60 (s Flow rate: 50 (µl/min	Number of cycles for each condition:	Contact times
	Settings	
	Condition Regeneration solution Contact time (s)	
Help < Back Next > Close	1 10 mM Gly pH 2.1 20	
	2 10 mM Gly pH 2.0 20	
	3 10 mM Gly pH 2.0 45	
	4 100 mM Gly pH 2.0 5	
	5 100 mM Gly pH 2.0 15	
		< Back Next > Close
Regeneration Scouting - System Preparations		
Prime before run		
Normalize detector		
Temperature settings		
Analysis temperature: 25 (°C)		
Sample compartment temperature: 25 (°C)		
Help Cycle Run List < Back Next > Close		

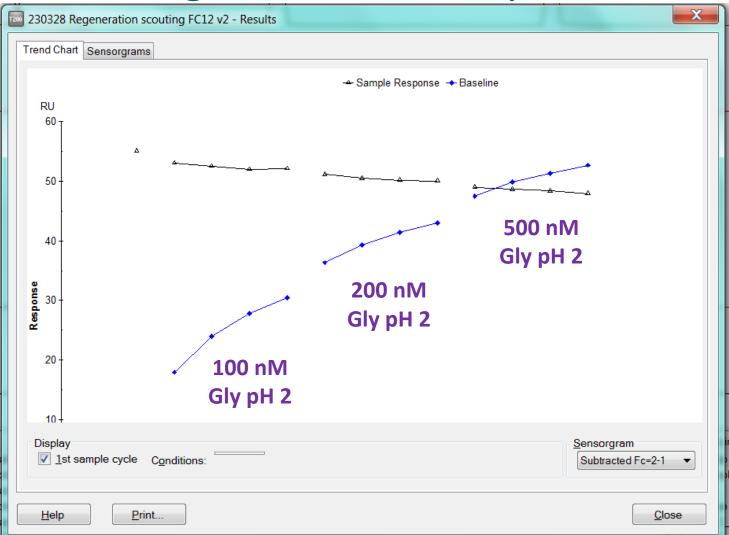

Sample and Reagent Rack 1	Position	Volume (µl)	Content	Туре
	R1 A1		0 nM GFP	Sample
	R1 A2	78 1	0 nM GFP	Sample
	R1 A3	78 1	0 nM GFP	Sample
	R1 A4	78 1	0 nM GFP	Sample
) R1 A5	78 1	0 nM GFP	Sample
	R1 A6	78 1	0 nM GFP	Sample
	R1 A7	78 1	0 nM GFP	Sample
	R1 A8	78 1	0 nM GFP	Sample
	R1 A9		0 nM GFP	Sample
	R1 A10	78 1	0 nM GFP	Sample
	R1 A11	78 1	0 nM GFP	Sample
) R1 A12	78 1	0 nM GFP	Sample
	R1 A13	78 1	0 nM GFP	Sample
	R1 A14	78 1	0 nM GFP	Sample
\circ	R1 A15	78 1	0 nM GFP	Sample
	R1 B1	78 1	0 nM GFP	Sample
	R1 B2	78 1	0 nM GFP	Sample
	R1 B3	78 1	0 nM GFP	Sample
6 () ⁵ () ¹	R1 B4	78 1	0 nM GFP	Sample
	R1 B5	78 1	0 nM GFP	Sample
	R1 B6	ż	0 nM GFP	Sample
) R1 C1	<u>.</u>	Buffer	Startup
	R1 C2	Įį	Buffer	Regenera
	R1 E1	<u>.</u>	0 mM Gly pH 2.0	Regenera
	R1 E2		0 mM Gly pH 2.1	Regenera
	R1 E3	356 1	00 mM Gly pH 2.0	Regenera
A B C D E F				
Help Menu	,		< Back	Next > Clos

5770 4


Regeneration Scouting - Prepare Run Protocol	
Tahoma • 10 • B <i>I</i> <u>U</u>	
Prepare Run Protocol	
 Make sure the correct sensor chip is docked. Make sure all samples & reagents are loaded in the rack and microplate according to the Rack Positions setup. (Vials should be sealed with rubber caps and microplate with adhesive foil.) Place the buffer(s) on the left hand tray and insert the correct tubing(s), see below. Note! Standby after run will use buffer A. Make sure there is fresh water in the water bottle on the right hand tray. If necessary, empty the waste bottle before start of the run. 	
Estimated run time: 2 h 1 min (excluding conditional statements, temperature changes and standby flow) Estimated buffer consumption:	Not in use
Help Menu	



• Don't close this window before inspecting...you can never get it back!



Regeneration scouting – second attempt

230327 Regeneration scouting FC12 - Experimental Parameters										
Regeneration parameters										
Flow rate:	30 (μl/min)									
Stabilization period: 60 (s										
High viscosity	solutions: First solution	n 📃 Second soluti	on							
Experimental de	Experimental design									
Number of cor	nditions: 3	•	Lock: 🔲 S	Solutions						
Number of cyc	cles for each condition: 4	•		Contact times						
Settings										
Condition	Regeneration solution 1	Contact time 1 (s)	Regeneration solution 2	Contact time 2 (s)						
1	1 100 mM Gly pH 2.0 5 100 mM Gly pH 2.0 5									
2	200 mM Gly pH 2.0	5	200 mM Gly pH 2.0	5						
3	500 mM Gly pH 2.0	5	500 mM Gly pH 2.0	5						
Help			< Back	Next > Close						

Regeneration scouting – second attempt

Kinetic titrations

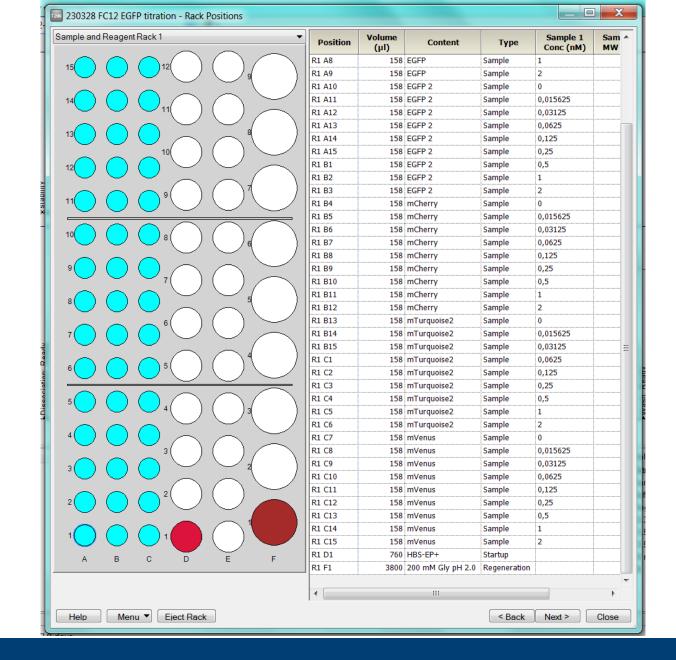
- Aim to span a concentration range from $10 \times K_D$ to $0.1 \times K_D$
- Association phase must be long enough to get reasonable shape in association curve (2-5 min)
- Dissociation phase also long enough to get good shape in curve
 - For tight interactions (low off rate, k_d), leave as long as possible
 - Length of dissociation is determined by the machine hardware (10 min)
- Faster flow rates are better for kinetic analysis
 - But use more analyte
- Inject a 'zero' concentration too (buffer only)
- Inject samples from lowest to highest concentration

230328 FC12 EGFP titration - Inje	ction Sequence	
Detection	Chip	
Elow path: 2-1	✓ Chip type: CM5 ▼	
	Ligand capture	
SAMPLE		
REGENERATION 1	Sample	
REGENERATION 2	<u> R</u> egeneratio 2 ▼	
RECEIVERNITON 2	Carry Over	
Help	< Back Next > Close	

230328 FC12 EGFP titration - Setup
Conditioning
Run conditioning cycle
Solution:
Contact time: (s) Number of injections:
Startup Image: Startup
Solution: HBS-EP+
Number of cycles: 5
Solvent correction
Run solvent correction Number of injections: 8
Repeat after sample cycles
Help <a>Sack Next > Close

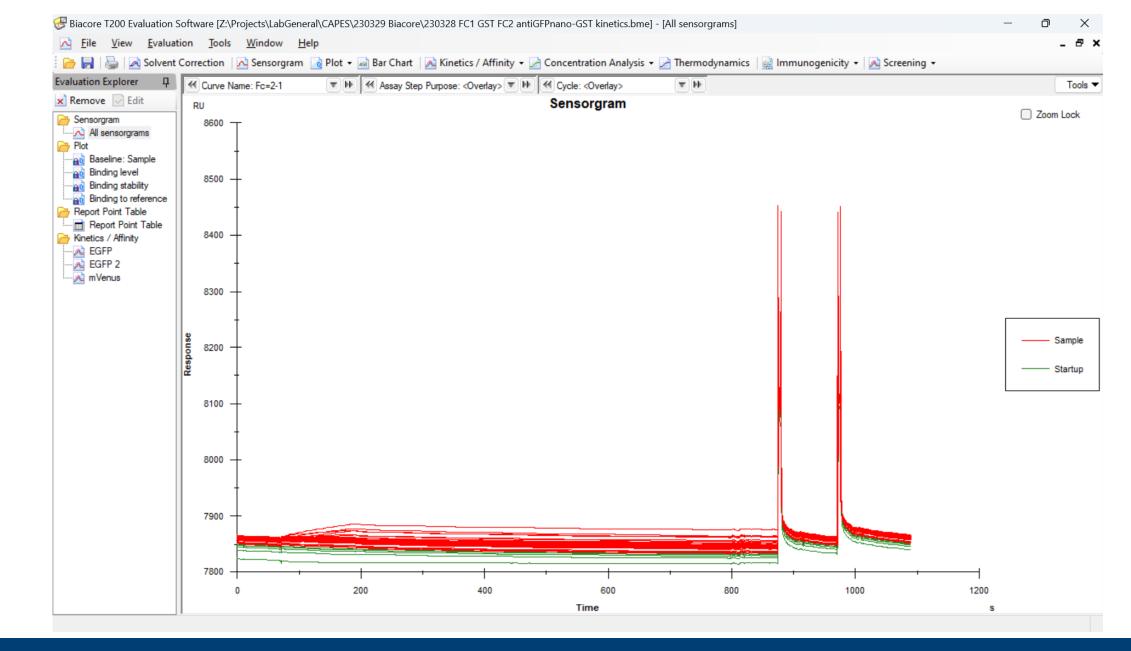
230328 FC12 EGFP titration - Injection Parameters	×
Sample Contact time: 120 (s Flow rate: 50 (µl/min Extra wash after injection with:	Dissociation time: 600 (s
First regeneration Solution: 200 mM Gly pH 2.0 Contact time: 5 (s Flow rate: 30 (μl/min	High viscosity solution
Second regeneration Solution: 200 mM Gly pH 2.0 Contact time: 5 (s Flow rate: 30 (μl/min	High viscosity solution Stabilization period: ⁶⁰ (s
Help	< Back Next > Close

			Concentration	Concentration	
	Sample id	MW (Da)	nM 🔻	µg/ml 🖣	1
	EGFP		0		
	EGFP		0,015625		
	EGFP		0,03125		
	EGFP		0,0625		
	EGFP		0,125		
	EGFP		0,25	0	
	EGFP		0,5		
	EGFP		1		
	EGFP		2		
0	mTurquoise2		0		
1	mTurquoise2		0,015625		
2	mTurquoise2		0,03125		
.3	mTurquoise2		0,0625		
4	mTurquoise2		0,125		
5	mTurquoise2		0,25		
6	mTurquoise2		0,5		
7	mTurquoise2		1		
8	mTurquoise2		2		
9	mVenus		0		
0	mVenus		0,015625		
1	mVenus		0,03125		
2	mVenus		0,0625		
3	mVenus		0,125		
1					

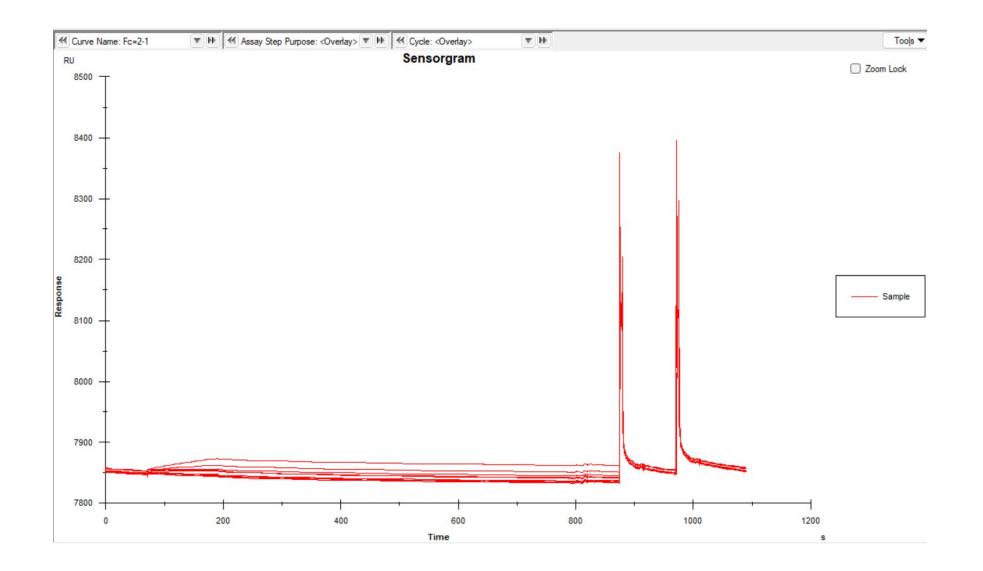


2303	28 FC12 EGFP titration	Samples						X
Sampl	es							
	Sample id	MW (Da)	Concentra	tion	Concentrati	on		
	Sample to	MW (Da)	nM	-	µg/ml	•		
1	EGFP		0					
2	EGFP		0,015625					
3 4	EGFP		0,03125					
5	EGFP		0,0625					E
Recomm	nended settings are not	t followed						
Sample serie: EGFP The sample series should contain at least one non-zero concentration that is to be run at least two (2) times. Sample serie: mTurquoise2 The sample series should contain at least one non-zero concentration that is to be run at least two (2) times. Sample serie: mVenus The sample series should contain at least one non-zero concentration that is to be run at least two (2) times. Sample serie: mCherry The sample series should contain at least one non-zero concentration that is to be run at least two (2) times. OK Ignore							III	
23	23 mVenus 0,125 ▼							
	Run order As entered Increasing concentration 							
Help	Import	Control	Samples				< Back Next > 0	lose

230328 FC12 EGFP titration - System R	Preparations
Prime before run	
Normalize detector	
Temperature settings	
Analysis temperature:	25 (°C)
Sample compartment temperature:	25 (°C)
Help Cycle Run List	< Back Next > Close



230328 FC12 EGFP titration - Prepare Run Protocol	
Tahoma - 10 - B <i>I</i> <u>U</u>	
 Prepare Run Protocol Make sure the correct sensor chip is docked. Make sure all samples & reagents are loaded in the rack and microplate according to the Rack Possetup. (Vials should be sealed with rubber caps and microplate with adhesive foil.) Place the buffer(s) on the left hand tray and insert the correct tubing(s), see below. Note! Standby after run will use buffer A. Make sure there is fresh water in the water bottle on the right hand tray. If necessary, empty the waste bottle before start of the run. 	sitions
Estimated run time: 15 h 20 min (excluding conditional statements, temperature changes and standby flow)	
Estimated buffer consumption:	
Running buffer At least 300 ml plus 65 ml/day for standby after run	Not in use
Help Menu	k Start Close

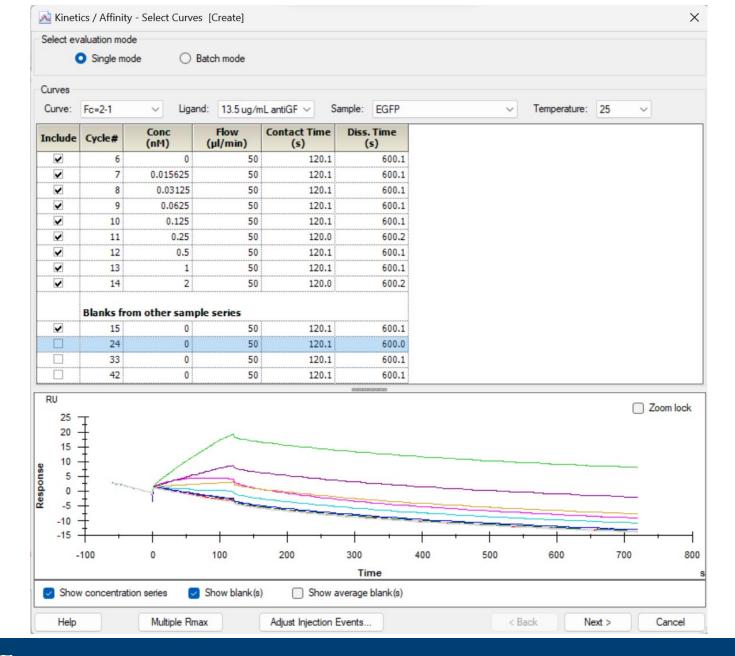


Included	Cycle#	Assay Step Purpose	Sample Name	Conc.	MW
Yes	5	Startup	HBS-EP+		
Yes	6	Sample	EGFP	0	
Yes	7	Sample	EGFP	0.015625	
Yes	8	Sample	EGFP	0.03125	
Yes	9	Sample	EGFP	0.0625	
Yes	10	Sample	EGFP	0.125	
Yes	11	Sample	EGFP	0.25	
Yes	12	Sample	EGFP	0.5	
Yes	13	Sample	EGFP	1	
Yes	14	Sample	EGFP	2	

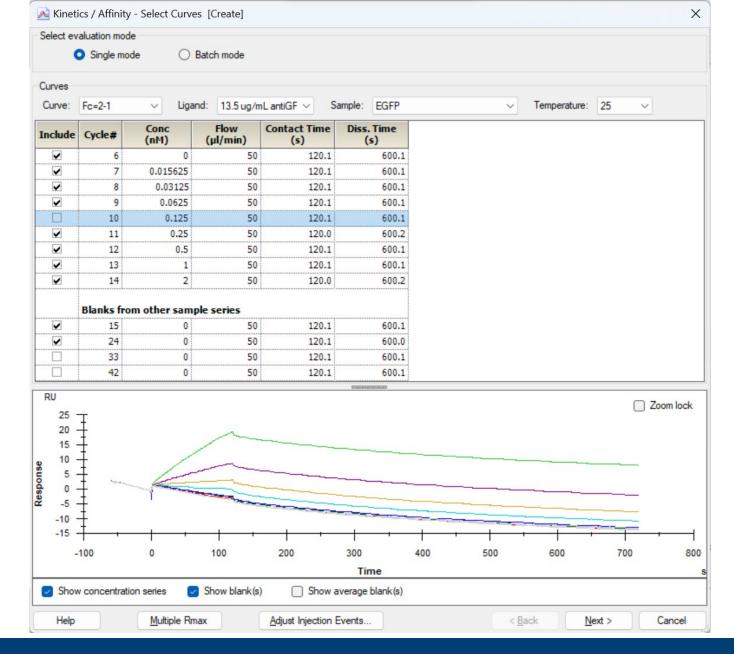
Image: Solvent Correction Image:	Select ev	ics / Affinity valuation mod Single mo		s [Create] Batch mode						×
Image: Sensorgram RU Big Sensorgram 8500	Curves Curve:	Fc=2-1	√ Ligar	nd: 13.5 ug/m	nLantiGF ∨ S	ample: EGFP	~	Temperature:	25 ~	
	Include	Cycle#	Conc (nM)	Flow (µl/min)	Contact Time (s)	Diss. Time (s)				
		6	0	50	120.1	600.1				
		7	0.015625	50	120.1	600.1				
		8	0.03125	50	120.1	600.1				
		9	0.0625	50	120.1	600.1				
		10	0.125	50		600.1				
		11	0.25	50		600.2				
		12	0.5	50		600.1				
		13	1	50		600.1				
		14	2	50	120.0	600.2				
	RU 25 - 20 - 15 - 10 - stor 5 - 5 - -5 - -10 -								Zoom	lock
	-15	+		+ +			+ + +	· · · ·		\neg
	1 -	-100	0	100	200	300 Time	400 500	600	700	800
	Char			Chan black (s
	Show	w concentrat	uon senes	Show blank(s)	Show a	average blank(s)				

Help

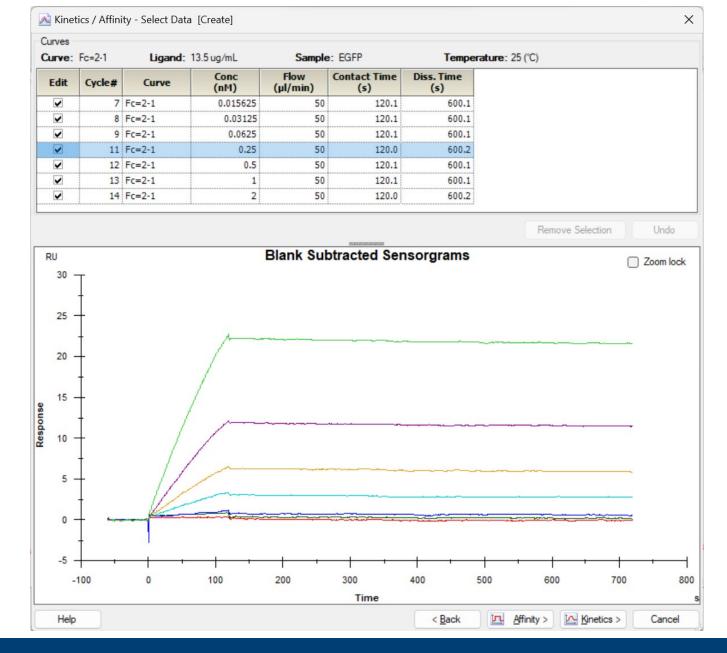
Multiple Rmax

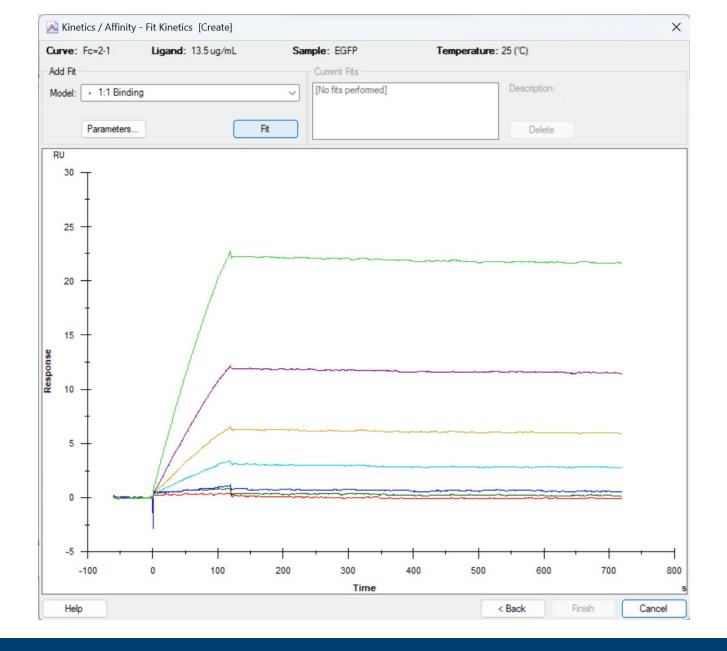

Adjust Injection Events...

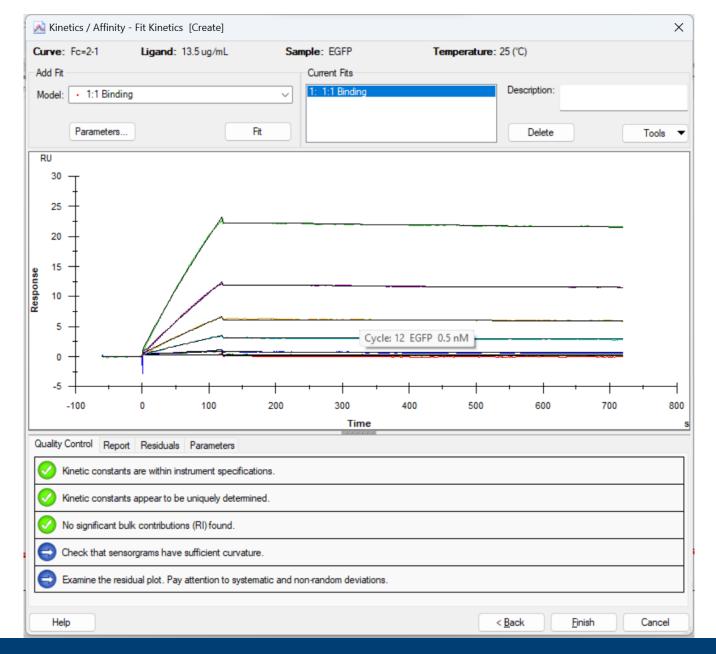
< Back

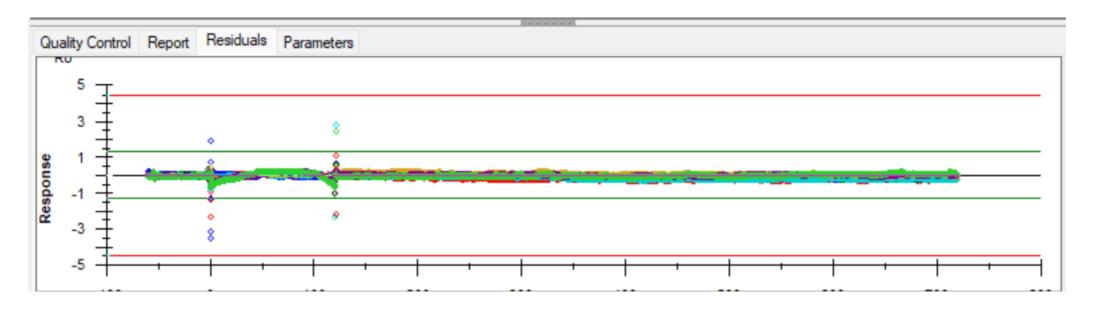

Next >

Cancel

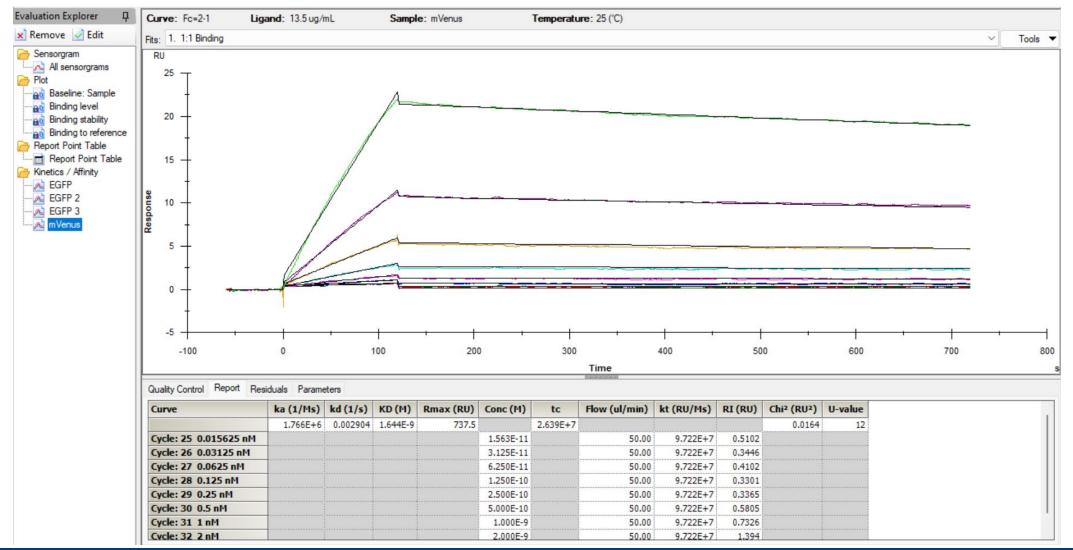




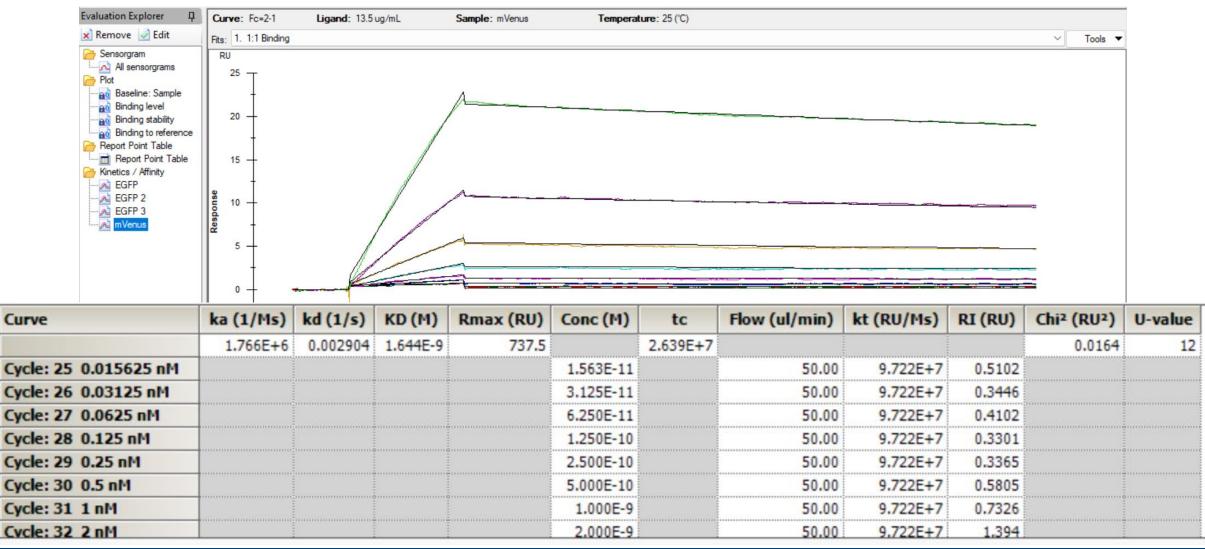




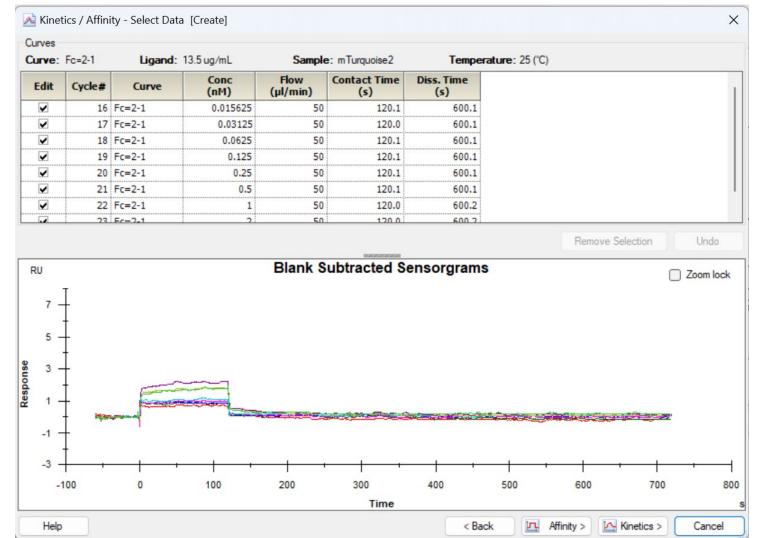
Curve	ka (1/Ms)	kd (1/s)	KD (M)	Rmax (RU)	Conc (M)	tc	Flow (ul/min)	kt (RU/Ms)	RI (RU)
	1.797E+6	7.261E-5	4.040E-11	78.04		1.169E+8			
Cycle: 7 0.015625 nM					1.563E-11		50.00	4.307E+8	0.2150
Cycle: 8 0.03125 nM					3.125E-11		50.00	4.307E+8	0.4908
Cycle: 9 0.0625 nM					6.250E-11		50.00	4.307E+8	0.3390
Cycle: 11 0.25 nM					2.500E-10		50.00	4.307E+8	0.4108
Cycle: 12 0.5 nM					5.000E-10		50.00	4.307E+8	0.5581
Cycle: 13 1 nM					1.000E-9		50.00	4.307E+8	0.6197
Cycle: 14 2 nM					2.000E-9		50.00		1.076



Curve	ka (1/Ms)	kd (1/s)	KD (M)	Rmax (RU)	Conc (M)	tc	Flow (ul/min)	kt (RU/Ms)	RI (RU)
	1.797E+6	7.261E-5	4.040E-11	78.04		1.169E+8			
Cycle: 7 0.015625 nM					1.563E-11		50.00	4.307E+8	0.2150
Cycle: 8 0.03125 nM					3.125E-11		50.00	4.307E+8	0.4908
Cycle: 9 0.0625 nM					6.250E-11		50.00	4.307E+8	0.3390
Cycle: 11 0.25 nM					2.500E-10		50.00	4.307E+8	0.4108
Cycle: 12 0.5 nM					5.000E-10		50.00	4.307E+8	0.558
Cycle: 13 1 nM					1.000E-9		50.00	4.307E+8	0.6197
Cvcle: 14 2 nM					2.000E-9		50.00	4.307E+8	1.076



mVenus



mVenus

mTurquoise2

mCherry

How did we do?

	k _{on}	k _{off}	Κ _D
EGFP 1	1.82E+06	7.42E-05	4.09E-11
EGFP 2	1.80E+06	7.26E-05	4.04E-11
EGFP 3	1.28E+07	2.68E-05	2.10E-12

What might we improve for next time?

- Ligand (antiGFPnano-GST)
 - Repeat with non-truncated/digested ligand
 - Capture at higher pH or further optimise regeneration to ensure we aren't damaging ligand (unclear why observed R_{max} was so much lower than theoretical)
- EGFP
 - Inject fixed concentration at different flow rates to test for mass transport
 - Use longer analyte injection so we see more curvature of traces (5 min)
- mVenus
 - Repeat with higher concentrations of mVenus (>20 nM)
- mTurqouise2
 - Repeat with much higher concentrations of mTurquoise2 (μM concentrations for an equilibrium analysis), perhaps with higher ligand capture
- mCherry
 - No binding!!

Further reading

- Cytiva manuals
 - Lots of very good reference material for the theory and practice of SPR
- SPR pages (<u>https://sprpages.nl/</u>)
 - Very extensive website with lots of useful tips and tricks
- Harvard Centre for Molecular Interactions (<u>https://cmi.hms.harvard.edu/surface-plasmon-resonance</u>)
 - Handy manuals that give you a good starting protocol for setting up your experiments
- Institut de Biologie Structurale handbook (<u>https://www.isbg.fr/IMG/pdf/biacore t200 getting started guide.pdf</u>)

