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Experimental structure determination

• Yesterday we heard about how to look at structures

• Today we’ll learn how to experimentally determine a structure
• Techniques for determining structures
• How to collect and process structural data
• How to build a new structure
• How to judge the quality of a structure
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Why study protein structure?

• Basic biology

• Unique insights into how 
biological systems function

• Structure-based drug design

• Relenza and Tamiflu were 
designed using structure of flu 
protein (neuraminidase)

Image: PDB-101: Molecule of the Month: ATP Synthase (rcsb.org)

ATP
Synthase
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Why study protein structure?

• Basic biology

• Unique insights into how 
biological systems function

• Structure-based drug design

• Relenza and Tamiflu were 
designed using structure of flu 
protein (neuraminidase)

© PDB-101: Molecule of the Month: Influenza Neuraminidase (rcsb.org)
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Why study protein structure?

• Vaccine development

• Can understand how new 
sequence variants might alter 
virus binding to its receptor

• SARS-Cov2 spike protein to the 
ACE2 receptor

© Nesci (2021) Chemical Biology and Drug Design, 98: 207-211 
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Determining a 3D structure

• Three main experimental approaches:
• X-ray crystallography
• Electron microscopy (cryo-EM)
• NMR

• All result in atomic co-ordinates that describe the position of atoms
• These co-ordinates are deposited in a public repository called the 

Protein Data Bank (PDB)
• All techniques have to tackle the problem of how very small proteins 

are!

Image: Janet Deane CC-BY 4.0
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Proteins are small
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• Me: ~1.5×100 m

• 5p piece: ~1.8×10-2 m

• Eukaryotic cell: ~1×10-4 m

• Bacterial cell: ~1×10-6 m

• Proteins: 1×10-9 to 1×10-8 m

• Atoms: ~0.4 x 10-10 m

Proteins are small
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Proteins are so small we can’t use visible light to see them

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html

© rsscience.com/microscope-types

• To resolve objects we need to match 
the wavelength of light we use to the 
object we want to observe
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Proteins are so small we can’t use visible light to see them

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html



31/03/2023 19

Radar Light Microscope Synchrotron

Proteins are so small we can’t use visible light to see them

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html
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Synchrotron

Let’s start here with X-ray crystallography

Proteins are so small we can’t use visible light to see them

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html
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Synchrotron

Let’s start here with X-ray crystallography

Proteins are so small we can’t use visible light to see them

Structural work 
uses the term 
Ångström (Å)

instead of 10-10

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html
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X-rays interact weakly with matter…

• They pass straight through 
our bodies (lots of protein!)

• We use ‘soft’ X-rays that 
interact more strongly with 
matter

• Energy ≈ 8-15 keV

• Wavelength ≈ 0.8-1.5 Å
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...and we crystallise proteins to enhance the signal

• Crystals are ordered arrays of molecules
• They diffract X-rays in phase, amplifying the signal

Not to scale!

Left Image: Stephen Graham CC-BY 4.0

Right Image: Garland Science 2012
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Crystallising proteins

• Requires large amounts 
(milligrams) of pure protein

• Exactly as we have been doing 
in this course

© University of California Davis, Current Techniques in Biophysics, X-ray Protein Crystallography
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Protein purity: >95% pure

Images modified from: Bernard Rupp 2010
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Crystallising proteins

• Equilibrate with chemical 
cocktails to promote 
crystallisation

Images: Bernard Rupp 2010
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Crystallising proteins

• Equilibrate with chemical 
cocktails to promote 
crystallisation

• Can’t predict conditions 
required to crystallise a 
given protein

• Try 1000s of conditions

Top Image: Bernard Rupp 2010

Image: Stephen Graham CC-BY 4.0
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Crystallising proteins

• Equilibrate with chemical 
cocktails to promote 
crystallisation

• Can’t predict conditions 
required to crystallise a 
given protein

• Try 1000s of conditions

Image: Stephen Graham CC-BY 4.0
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Nanolitre-scale 
crystallisation

Video: Stephen Graham CC-BY 4.0
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and automated visualisation

Images: Stephen Graham CC-BY 4.0
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Manually harvest crystals

Images: Stephen Graham CC-BY 4.0
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Harvesting and Mounting

• Flash-cooled in liquid nitrogen to minimise radiation damage by 
intense X-rays

• Stored in a transport dewar at liquid nitrogen temperatures

Left Image: Bernard Rupp 2010

Right Image: Stephen Graham CC-BY 4.0
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Travel to a synchrotron

Image © Diamond Light Source
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...which actually looks like this

Image: Stephen Graham CC-BY 4.0
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Collect diffraction data

X-rays

Images: Stephen Graham CC-BY 4.0
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Solve structure

Left Image: Stephen Graham CC-BY 4.0

Right Image: Janet Deane CC-BY 4.0 
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Solve structure – in a nutshell

• Several approaches

• Most common is called 
molecular replacement 

• This uses a predicted model of 
the protein to “determine 
phase information”

• This is a whole course in itself!

Image: Janet Deane CC-BY 4.0 
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Build structure

Images: Janet Deane CC-BY 4.0 
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Build structure

Images: Janet Deane CC-BY 4.0 
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Build structure

Images: Janet Deane CC-BY 4.0 
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Interpret structure and test functional hypotheses

Images: Janet Deane CC-BY 4.0 
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This afternoon’s workshop

• We’ll use Coot this afternoon to look at 
maps from a crystal structure

• Blue map (2Fo-Fc) is the electron density
• This is how we see where the atoms are
• This includes the protein and solvent

• Red/Green map (Fo-Fc) is the difference map
• This is where the model and the density disagree
• Green – the model is missing something
• Red – something is modelled incorrectly

Images: Janet Deane CC-BY 4.0 
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maps from a crystal structure

• Blue map (2Fo-Fc) is the electron density
• This is how we see where the atoms are
• This includes the protein and solvent

• Red/Green map (Fo-Fc) is the difference map
• This is where the model and the density disagree
• Green – the model is missing something
• Red – something is modelled incorrectly

Images: Janet Deane CC-BY 4.0 
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That’s crystallography in a nutshell.

How about cryoEM?



31/03/2023 45

How about Cryo-EM?

• With a purified protein sample >150 kDa you can also try Cryo-EM

© Martin Högbom, Royal Swedish Academy of Sciences

“Resolution Revolution”

From shapeless blobs to 
atomic resolution
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How about Cryo-EM?

• With a purified protein sample >150 kDa you can also try Cryo-EM

© Martin Högbom, Royal Swedish Academy of Sciences

Revolution was driven by 
advances in technology:

- Direct electron detectors
- Improved microscope stability
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How about Cryo-EM?

• With a purified protein sample >150 kDa you can also try Cryo-EM
• Different pipeline compared with crystallography:

Purify protein
Put on grids

Plunge 
freeze grids

Check 
sample 
quality

Collect 
images

Processing 
and data 
analysis

3D 
reconstruction
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Making grids

© Lori Passmore
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Making grids

© Lori Passmore

© Johan Jarnestad, Royal Swedish Academy of Sciences 
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Making grids

© Costa et al, Methods in Molecular Biology, 10.1007/978-1-4939-7033-9_28

© Johan Jarnestad, Royal Swedish Academy of Sciences 
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© MRC-LMB

© Johan Jarnestad, Royal Swedish Academy of Sciences 

Collecting Images
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© FEI Company

© Johan Jarnestad, Royal Swedish Academy of Sciences 

Collecting Images
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© FEI Company

© John O’Brien, New Yorker Magazine 1991

Collecting Images

A single 2D projection image is insufficient to 
determine structure of a 3D object
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© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5 

Processing and Data Analysis
Particle picking
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© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5 

Processing and Data Analysis
Particle picking

2D class averages
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© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5 

Processing and Data Analysis
Particle picking

2D class averages

3D reconstruction
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© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5 

Processing and Data Analysis
Particle picking

2D class averages

3D reconstruction

In a similar way to crystallography, 
we build a model into this map
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Impure samples – what if you have contaminants?

• Consequences of averaging over single particles

© Doryen Bubeck, Imperial College
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• Consequences of averaging over single particles

Impure samples – what if you have contaminants?

© Doryen Bubeck, Imperial College
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• Mixed particles

Impure samples – what if you have contaminants?

© Doryen Bubeck, Imperial College
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How do we judge the quality of 
an experimental structure?
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Resolution and structure quality

• The overall resolution of a structure is a 
simple measure of how “good” it is

• Even though there is one “resolution” 
quoted, some regions are worse than others

• “Resolution” is calculated differently in 
crystallography and cryoEM

© Martin Högbom, Royal Swedish Academy of Sciences

© Chen et al, 2020, Nature Plants, 6:1-7.
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• In crystallography, resolution is determined 
by Bragg spacing in the crystal

• In cryoEM, resolution is determined by the 
Fourier Shell Correlation (FSC) for two cryo-
EM half-maps

• These two numbers are not equivalent, 
making what “resolution” means a bit 
confusing

Resolution and structure quality

© University of Alaska Fairbanks

© Chen et al, 2020, Nature Plants, 6:1-7.
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Resolution and Maps

• Resolution determines the quality of the maps to build into
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Resolution and Maps

• Clearly much harder to accurately model 
the tryptophan sidechain here

• But it can be worse!

© University of California Davis, Current Techniques in Biophysics, X-ray Protein Crystallography
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Resolution and Maps

• Clearly much harder to accurately model 
the tryptophan sidechain here

• But it can be worse!

© University of California Davis, Current Techniques in Biophysics, X-ray Protein Crystallography

© Kellogg et al, 2016, PNAS 113: 9430-9.
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Maps and Models

• Important to understand the 
difference between maps and 
models:

• Maps are the experimental data

• Models are the interpretation of 
that data

© Kellogg et al, 2016, PNAS 113: 9430-9.
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Judging Model Quality

• You can look directly at the maps using WinCoot
• This is what we’re doing later

• Other useful statistics include:

• Residuals (Rfree) in crystallography

• Ramachandron plot and outliers

• Molprobity clash score

• PDB validation reports
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Judging Model Quality

• You can look directly at the maps using WinCoot
• This is what we’re doing later

• Other useful statistics include:

• PDB validation reports

• Residuals (Rfree) in crystallography

• Molprobity clash score

• Ramachandron plot and outliers PDB ID: 1CBS
Very good quality, 1.8 Å

© https://www.wwpdb.org/validation/validation-reports
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Judging Model Quality

• You can look directly at the maps using WinCoot
• This is what we’re doing later

• Other useful statistics include:

• PDB validation reports

• Residuals (Rfree) in crystallography

• Molprobity clash score

• Ramachandron plot and outliers PDB ID: 1FCC
Very bad quality, 3.2 Å

© https://www.wwpdb.org/validation/validation-reports
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Judging Model Quality

• You can look directly at the maps using WinCoot
• This is what we’re doing later

• Other useful statistics include:

• PDB validation reports

• Residuals (Rfree) in crystallography

• Molprobity clash score

• Ramachandron plot and outliers PDB ID: 1EG1
Mixed quality, 3.6 Å

© https://www.wwpdb.org/validation/validation-reports
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Residuals (Rfree) in crystallography

• Take a fraction of your original dataset (5%)

• Don’t use it for model building or refinements

• Use it to test how well your model fits these independent data

• Measure of the quality of your model

• Tests if you’re building into “noise” in your dataset

• Quoted Rfree should go down as the model improves but not be >5% 
from Rwork
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Molprobity Clash Score

• Electrons distributed around atoms 
form a van der Waals radius

• If atoms are too close the electron 
clouds would “clash”

• Can display this in Coot

• Also Molprobity calculates this in its 
“clash score”

© Slideserve, 486707
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Molprobity Clash Score

• Electrons distributed around atoms 
form a van der Waals radius

• If atoms are too close the electron 
clouds would “clash”

• Can display this in Coot

• Also Molprobity calculates this in its 
“clash score”

© Slideserve, 486707

© https://phenix-online.org/documentation/dictionary.html
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Ramachandran Plots

• Allowed geometry based on 
chemistry of the peptide 
backbone

• Plot of the backbone phi (φ) 
and psi (ψ) torsion angles

• Residues in disallowed regions 
are likely modelled wrongly

© https://www.peptideweb.com
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Ramachandran Plots

• Allowed geometry based on 
chemistry of the peptide 
backbone

• Plot of the backbone phi (φ) 
and psi (ψ) torsion angles

• Residues in disallowed regions 
are likely modelled wrongly

© https://www.peptideweb.com

Most favoured
Allowed
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Ramachandran Plots

• Allowed geometry based on 
chemistry of the peptide 
backbone

• Plot of the backbone phi (φ) 
and psi (ψ) torsion angles

• Residues in disallowed regions 
are likely modelled wrongly

© Patel et al, 2015, J. Biomol. Struct. Dynam., 34:1-30. 
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Other techniques – solution structures
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Other techniques – solution structures

• NMR: nuclear magnetic resonance

• SAXS: small-angle X-ray scattering

Limited to small proteins
Good for dynamics

© creative-biostructure.com

© Benedyk, et al, 2022, J. Biol. Chem., 298:102589.
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Other techniques – solution structures

• NMR: nuclear magnetic resonance

• SAXS: small-angle X-ray scattering

Limited to small proteins
Good for dynamics

© creative-biostructure.com

© Benedyk, et al, 2022, J. Biol. Chem., 298:102589.

Low resolution
No size limit
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Pros and Cons of Different Methods

• These are all complementary but there are some important differences

NMR

Pros
Captures dynamics

In solution structure

Cons
Proteins need to be small
Typically low pH buffers

X-ray Crystallography

Pros
Can do small and big proteins

Relatively cheap

Cons
Has to crystallise!

Typically captures one conformation
Can have crystal packing artefacts

Cryo-EM

Pros
Small amounts of sample

No “phase problem”

Cons
Can’t do small proteins (<150kDa)

Expensive
Protein must tolerate freezing
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Experimental structure determination

• Today we learnt about how to experimentally determine a structure
• Techniques for determining structures
• How to collect and process structural data
• How to build a new structure
• How to judge the quality of a structure

• Tomorrow we will learn how to
• Predict a structure using AlphaFold
• How to evaluate the quality of this prediction
• What AlphaFold can (and can’t) do
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