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Protein Structure
Determination

Day 9: Thursday 30t March



Experimental structure determination

* Yesterday we heard about how to look at structures

* Today we’ll learn how to experimentally determine a structure

* Techniques for determining structures
* How to collect and process structural data
 How to build a new structure

* How to judge the quality of a structure
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Why study protein structure?

* Basic biology

* Unique insights into how
biological systems function

ATP
Synthase
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Why study protein structure?

* Basic biology

* Unique insights into how
biological systems function

* Structure-based drug design

e Relenza and Tamiflu were
designed using structure of flu
protein (neuraminidase)

i> UNIVERSITY OF

CAMBRIDGE © PDB-101: Molecule of the Month: Influenza Neuraminidase (rcsb.org)



Why study protein structure?

* Vaccine development

Agofh, . SPIKE (b)

e Can understand how new
sequence variants might alter
virus binding to its receptor

* SARS-Cov2 spike protein to the
ACE2 receptor

UNIVERSITY OF

CAMBRIDGE © Nesci (2021) Chemical Biology and Drug Design, 98: 207-211



Determining a 3D structure

* Three main experimental approaches:
e X-ray crystallography
* Electron microscopy (cryo-EM)
* NMR
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Determining a 3D structure

* Three main experimental approaches:
e X-ray crystallography
* Electron microscopy (cryo-EM)
* NMR

* All result in atomic co-ordinates that describe the position of atoms

* These co-ordinates are deposited in a public repository called the
Protein Data Bank (PDB)

“PDEB

PROTEIN DATA BANK
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Determining a 3D structure

* Three main experimental approaches:
e X-ray crystallography
* Electron microscopy (cryo-EM)
* NMR

* All result in atomic co-ordinates that describe the position of atoms

* These co-ordinates are deposited in a public repository called the
Protein Data Bank (PDB)

 All techniques have to tackle the problem of how very small proteins
are!
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Proteins are small




Proteins are small

e Me: ~1.5x10% m
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Proteins are small

e Me: ~1.5x10% m

* 5p piece: ~1.8x10? m
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Proteins are small

* Me: ~1.5x10° m
* 5p piece: ~1.8x10? m

* Eukaryotic cell: ¥1x10* m
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Proteins are small

Me: ~1.5x10°m

5p piece: ~1.8x107% m

Eukaryotic cell: ~1x10% m

Bacterial cell: ¥1x10°® m
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Proteins are small

Me: ~1.5x10°m

* 5p piece: ~1.8x10? m

Eukaryotic cell: ~1x10% m

Bacterial cell: ¥1x10°® m

Proteins: 1x10° to 1x102 m
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Proteins are small

Me: ~1.5x10°m

* 5p piece: ~1.8x10? m

Eukaryotic cell: ~1x10% m

Bacterial cell: ¥1x10°® m

Proteins: 1x10° to 1x102 m

Atoms: ~0.4 x 1019 m
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Proteins are so small we can’t use visible light to see them

Radiation Type Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray
Wavelength (m)  10° 107 107 0.5%10° 107° 107 10742

* To resolve objects we need to match
the wavelength of light we use to the
object we want to observe

UNIVERSITY OF Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html
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Proteins are so small we can’t use visible light to see them

Radiation Type Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray
Wavelength (m)  10° 107 107 0.5%10° 107° 107 10742

Approximate Scale
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Proteins are so small we can’t use visible light to see them

Radiation Type Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray
Wavelength (m)  10° 107 107 0.5%10° 107° 107 10742
Approximate Scale 1 : | ;
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Proteins are so small we can’t use visible light to see them

Radiation Type Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray
Wavelength (m)  10° 107 107 0.5%10° 107° 107 10742
Approximate Scale 1 ‘ ‘ ; o
of wavelength Em 4 Bl - & .= e ) { % ‘
10* 10° 10" 10" 10'° 10'® 107
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Let’s start here with X-ray crystallography

Synchrotron

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html




Proteins are so small we can’t use visible light to see them

Radiation Type Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray
-12

Wavelength (m)  10° 107° 1077 0.5x10°° 107® 1071 10
| - \ Structural work
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Let’s start here with X-ray crystallography

Synchrotron

Image modified from http://hinkhousescience.weebly.com/electromagnetic-mini-unit.html




X-rays interact weakly with matter...

* They pass straight through
our bodies (lots of protein!)

e We use ‘soft’ X-rays that
interact more strongly with
matter




...and we crystallise proteins to enhance the signal

Not to scale!

* Crystals are ordered arrays of molecules
* They diffract X-rays in phase, amplifying the signal

Left Image: Stephen Graham CC-BY 4.0

CAMBRIDGE Right Image: Garland Science 2012



Crystallising proteins

* Requires large amounts
(milligrams) of pure protein

* Exactly as we have been doing
in this course

CAMBRIDGE © University of California Davis, Current Techniques in Biophysics, X-ray Protein Crystallography



Protein purity: >95% pure

- .o BRSNS
., §§§§:§ 83888 ..:i.i. .

UNIVERSITY OF

CAMBRIDGE Images modified from: Bernard Rupp 2010



Crystallising proteins

Mix cocktail
and protein

* Equilibrate with chemical
cocktails to promote
crystallisation

Well with crystallization cocktail
(precipitants, additives,
detergents, etc. — unlimited
combinations possible)

@

UNIVERSITY OF
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Crystallising proteins

* Equilibrate with chemical il—

cocktails to promote
crystallisation

e Can’t predict conditions
required to crystallise a
given protein

e Try 1000s of conditions

UNIVERSITY OF Top Image: Bernard Rupp 2010

CAMBRIDGE Image: Stephen Graham CC-BY 4.0



Crystallising proteins

* Equilibrate with chemical
cocktails to promote
crystallisation

e Can’t predict conditions
required to crystallise a
given protein

e Try 1000s of conditions

UNIVERSITY OF
CAMBRIDGE Image: Stephen Graham CC-BY 4.0



Nanolitre-scale
crystallisation

2|
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and automated visualisation

Images: Stephen Graham CC-BY 4.0



Manually harvest crystals

UNIVERSITY OF
CAMBRIDGE Images: Stephen Graham CC-BY 4.0




Harvesting and Mounting

8o

* Flash-cooled in liquid nitrogen to minimise radiation damage by
Intense X-rays
e Stored in a transport dewar at liquid nitrogen temperatures

UNIVERSITY OF Left Image: Bernard Rupp 2010

CAMBRIDGE Right Image: Stephen Graham CC-BY 4.0



Travel to a synchrotron

UNIVERSITY OF
CAMBRIDGE Image © Diamond Light Source




...which actually looks like this

UNIVERSITY OF
CAMBRIDGE Image: Stephen Graham CC-BY 4.0




Collect diffraction data

UNIVERSITY OF
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Solve structure
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Solve structure — in a nutshell

e Several approaches

* Most common is called
molecular replacement

MN2B00E 3

TP

ay

* This uses a predicted model of ‘

the protein to “determine
phase information”

i I L

* This is a whole course in itself!

CAMBRIDGE Image: Janet Deane CC-BY 4.0



Build structure

File Edit cCalculate Dra X1 falidate HID About Exte Stephen's menu

RfRC
‘.". Find Waters t\ Add Al Conf

Map

{mol. no: 0) CA /1/A/185 PHE occ: 1.00 bF: 25.70 ele: C pos: (61.24,51.23,16.98) (mol. no: 0) CG /1/A/185 PHE occ: 1.00 bf: 23.31 ele: € pos: (61.06,92.60,14.81)
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Build structure
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Build structure

Validate HID xtensions Stephen's menu

{mol. no: 0) CG /1/A/185 PHE occ: 1.00 bF: 23.31 ele: C pos: (61.06,92.60,14.81)

UNIVERSITY OF
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Interpret structure and test functional hypotheses
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This afternoon’s workshop

e We'll use Coot this afternoon to look at
maps from a crystal structure

* Blue map (2Fo-Fc) is the electron density
* This is how we see where the atoms are
* This includes the protein and solvent

CAMBRIDGE Images: Janet Deane CC-BY 4.0



This afternoon’s workshop

e We'll use Coot this afternoon to look at
maps from a crystal structure

* Blue map (2Fo-Fc) is the electron density g
* This is how we see where the atoms are
* This includes the protein and solvent

* Red/Green map (Fo-Fc) is the difference map
* This is where the model and the density disagree
* Green —the model is missing something
 Red —something is modelled incorrectly

2 UNIVERSITYOF

Images: Janet Deane CC-BY 4.0



That’s crystallography in a nutshell.

How about cryoEM?
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How about Cryo-EM?

e With a purified protein sample >150 kDa you can also try Cryo-EM

“Resolution Revolution”

From shapeless blobs to
atomic resolution

Resolution
at present

Resolution
before 2013

UNIVERSITY OF

CAMBRIDGE © Martin Hogbom, Royal Swedish Academy of Sciences



How about Cryo-EM?

e With a purified protein sample >150 kDa you can also try Cryo-EM

Revolution was driven by
advances in technology:

Direct electron detectors
Improved microscope stability

Resolution
at present

Resolution
before 2013

UNIVERSITY OF

CAMBRIDGE © Martin Hogbom, Royal Swedish Academy of Sciences



How about Cryo-EM?

e With a purified protein sample >150 kDa you can also try Cryo-EM
* Different pipeline compared with crystallography:

Purify protein Plunge Check Collect Processing 3D
Put on grids freeze grids sample images and data  reconstruction
quality analysis

CAMBRIDGE
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DUBOCHET'S
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around the sample,
which then is cooled by
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DUBOCHET'S

Making grids VITRIFICATION METHOD

The sample is
transferred to a metal
mash and excess
material remoaved,

= T
_H_-'," :;"__- “5
%’
ol
Emb’E/ided particles
GE-
@* l -
The sample forms a thin
@ 1 @ film across the holes in the
rmesh when it 1s shot into
1 ethane at about -190°C,
Carbﬂn thln Sl:'lper The w;t::.’ v:trihels
aroun e sample,
cooled vitreous ieh i s R by
H liquid nitrogen during
IGE |a}‘er the measurements in
the electron microscope.

DQUID
NITROGEN

9:.1551: | FTL R AL

© Costa et al, Methods in Molecular Biology, 10.1007/978-1-4939-7033-9 28
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Collecting Images

Randomly oriented proteins are
hit by the electron beam, leaving a
trace on the image.

b o UNIVERSITY OF © MRC-LMB

© Johan Jarnestad, Royal Swedish Academy of Sciences




Collecting Images

Randomly oriented proteins are
hit by the electron beam, leaving a
trace on the image.

b f‘ UNIVERSITY OF © FEI Company

© Johan Jarnestad, Royal Swedish Academy of Sciences




Collecting Images

A single 2D projection image is insufficient to
determine structure of a 3D object

UNIVERSITY OF © FEI Company

CAMBRIDGE © John O’Brien, New Yorker Magazine 1991




Processing and Data Analysis

Particle picking

The computer discriminates
between the traces and the <=
fuzzy background, placing

similar ones in the same group.

© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5




Processing and Data Analysis

Particle picking

The computer discriminates
between the traces and the <=
fuzzy background, placing

sirnilar ones in the same group.

2D class averages

Using thousands of

similar traces, the

computer generates

a high-resolution

2D image ||' \ L

1 — =
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© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5




Processing and Data Analysis

Particle picking

Ay R E

The computer discriminates
between the traces and the <=
fuzzy background, placing

similar ones in the same group.

2D class averages

Using thousands of
similar traces, the

computer generates

a high-resolution
2D image

The computer
calculates how the
different 20 images
relate to each other
and generates a
high-resolution
structure in 30.

© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5




Processing and Data Analysis

J

The computer discriminates
between the traces and the <=
fuzzy background, placing

similar ones in the same group.

Particle picking

L ._;:.: Fht 5 -.

2D class averages

Using thousands of
similar traces, the
computer generates

a high-resolution
2D image

The computer
calculates how the
different 20 images
relate to each other
and generates a
high-resolution
structure in 30.

© Johan Jarnestad, Royal Swedish Academy of Sciences

© Coleman et al, 2019, Nature, 569:1-5




Impure samples — what if you have contaminants?

* Consequences of averaging over single particles

UNIVERSITY OF
CAMBRIDGE © Doryen Bubeck, Imperial College




Impure samples — what if you have contaminants?

* Consequences of averaging over single particles

UNIVERSITY OF
CAMBRIDGE © Doryen Bubeck, Imperial College




Impure samples — what if you have contaminants?

* Mixed particles

UNIVERSITY OF
CAMBRIDGE © Doryen Bubeck, Imperial College




How do we judge the quality of
an experimental structure?
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Resolution and structure quality

* The overall resolution of a structure is a
simple measure of how “good” it is

* Even though there is one “resolution”
guoted, some regions are worse than others

4.0 A
38A

3.5A
32 A
28A

e “Resolution” is calculated differently in
crystallography and cryoEM

UNIVERSITY OF © Martin Hogbom, Royal Swedish Academy of Sciences

CAMBRIDGE © Chen et al, 2020, Nature Plants, 6:1-7.



Resolution and structure quality

* In crystallography, resolution is determined
by Bragg spacing in the crystal

* In cryoEM, resolution is determined by the
Fourier Shell Correlation (FSC) for two cryo-
EM half-maps 107

. 2 0.5+
* These two numbers are not equivalent, "

making what “resolution” means a bit
confusing 00

FSC=0.143

| | | | | | | ] | |
Olc  1M0  1/5  1/3.33 125  1/2
Resolution (1/A)

© University of Alaska Fairbanks

CAMBRIDGE © Chen et al, 2020, Nature Plants, 6:1-7.



Resolution and Maps

* Resolution determines the quality of the maps to build into

UNIVERSITY OF
"$» CAMBRIDGE




Resolution and Maps

~>'d
)

* Clearly much harder to accurately model
the tryptophan sidechain here

- UNIVERSITY OF

J CAMBRIDGE © University of California Davis, Current Techniques in Biophysics, X-ray Protein Crystallography




Resolution and Maps

* Clearly much harder to accurately model
the tryptophan sidechain here

e But it can be worse!

© University of California Davis, Current Techniques in Biophysics, X-ray Protein Crystallography

© Kellogg et al, 2016, PNAS 113: 9430-9.




Maps and Models

* Important to understand the
difference between maps and
models:

* Maps are the experimental data

* Models are the interpretation of
that data

#B> UNIVERSITY OF

HH CAMBRIDGE © Kellogg et al, 2016, PNAS 113: 9430-9.



Judging Model Quality

* You can look directly at the maps using WinCoot
* This is what we’re doing later




Judging Model Quality

* You can look directly at the maps using WinCoot
* This is what we’re doing later

W O RLDWTIDE

* Other useful statistics include: erDB
Full wwPDB X-ray Structure Validation Report (i)
* PDB validation reports et Percentile Ranks vae
Clashscore NN | o

Ramachandran outliers I 0

° ReSiduaIS (Rfree) in CrySta”Ography Sidechain outliers NN [ D 4%

RSRZ outliers I 0

Worse Better

0 Percentile relative to all X-ray structures

* Molprobity clash score et i oo e s i s
 Ramachandron plot and outliers Very g:oBd'E:J:ﬁtisl o i

UNIVERSITY OF

© https://www.wwpdb.org/validation/validation-reports
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Judging Model Quality

* You can look directly at the maps using WinCoot
* This is what we’re doing later

W O RLDWTIDE

P
* Other useful statistics include: REIDE
Full wwPDB X-ray Structure Validation Report (i)
¢ PDB Va“dation reports Metric Percentile Ranks Value
Clashscore - T 44
. . Ramachandran outliers . G.2%
* Residuals (Rfree) in crystallography Sidechain outlers u — 0.2,
RSRZ outliers NN 0 . 3.6%
0 Percentile relative ta all X-ray structures
[ ] M O I p ro b Ity C I a S h SCO re I]F‘Erl:entiIE relative ta X-ray structures of similar resolution
. PDB ID: 1FCC

Ramachandron plot and outliers _ A
Very bad quality, 3.2 A

UNIVERSITY OF

CAMBRIDGE © https://www.wwpdb.org/validation/validation-reports



Judging Model Quality

* You can look directly at the maps using WinCoot

* This is what we’re doing later

 Other useful statistics include:

PDB validation reports

Molprobity clash score

Ramachandron plot and outliers

UNIVERSITY OF

CAMBRIDGE

Residuals (Rfree) in crystallography

W O RLDWTIDE
PROTEIN DATA BANK

Full wwPDB X-ray Structure Validation Report (i)

Metric Percentile Ranks Value
Rfrec HI 0.203
Clashscore N 13

Ramachandran outliers T 1.5%
Sidechain outliers NN N 5.0%

RSRZ outliers I 0.7%

Waorse Bettar
I Percentile relative to all X-ray structures

[ Percentile relative to X-ray structuraes of similar resolution

PDB ID: 1EG1
Mixed quality, 3.6 A

© https://www.wwpdb.org/validation/validation-reports




Residuals (Rq,..) in crystallography

* Take a fraction of your original dataset (5%)

* Don’t use it for model building or refinements

* Use it to test how well your model fits these independent data
* Measure of the quality of your model

 Tests if you're building into “noise” in your dataset

* Quoted R;,., should go down as the model improves but not be >5%
from R

work




Molprobity Clash Score

e Electrons distributed around atoms
form a van der Waals radius

Covalent van der Waals
radius radius
(0.062 nm) (0.14 nm)

e If atoms are too close the electron
clouds would “clash”

CAMBRIDGE © Slideserve, 486707



Molprobity Clash Score

e Electrons distributed around atoms
form a van der Waals radius

Covalent van der Waals
radius radius
(0.062 nm) (0.14 nm)

e If atoms are too close the electron
clouds would “clash”

e Can display this in Coot

* Also Molprobity calculates this in its
“clash score”

© Slideserve, 486707

CAMBRIDGE © https://phenix-online.org/documentation/dictionary.html



Ramachandran Plots

* Allowed geometry based on
chemistry of the peptide
backbone

© https://www.peptideweb.com



Ramachandran Plots

* Allowed geometry based on
chemistry of the peptide

backbone
Most favoured
anti-parallel p-sheet \‘30‘
* Plot of the backbone phi ()
and psi () torsion angles pralpanos '

-180  -135  -90 -45 0 45 90 135 180

. UNIVERSITY OF

/ ; CAMBRIDGE © https://www.peptideweb.com



Ramachandran Plots

* Allowed geometry based on -
chemistry of the peptide
backbone

90
45

* Plot of the backbone phi (¢) =
and psi () torsion angles e

Psi (degrees)
=]

1354

* Residues in disallowed regions
are likely modelled wrongly

Phu (degrees)

UNIVERSITY OF

CAMBRIDGE © Patel et al, 2015, J. Biomol. Struct. Dynam., 34:1-30.



Other techniques — solution structures
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Other techniques — solution structures

* NMR: nuclear magnetic resonance

]

Limited to small proteins

Good for dynamics

= A ':;’ 5 W e *
Data acq,.ui.siﬁom Spectral processing Structural analysis

Purified protein > N  prepad ratiol :;"

© creative-biostructure.com

CAMBRIDGE © Benedyk, et al, 2022, J. Biol. Chem., 298:102589.



Other techniques — solution structures

* NMR: nuclear magnetic resonance

]

Limited to small proteins

Good for dynamics

Purified protein > NMR sample preparation’

Data acquisition

* SAXS: small-angle X-ray scattering

| 15 J . ]
i . Low resolution
E‘/\‘ o No size limit
o E4_

© creative-biostructure.com

UNIVERSITY OF
CAMBRIDGE © Benedyk, et al, 2022, J. Biol. Chem., 298:102589.



Pros and Cons of Different Methods

* These are all complementary but there are some important differences

-

NMR

Pros
Captures dynamics

N

In solution structure

Cons

Proteins need to be small
Typically low pH buffers

&

/

UNIVERSITY OF

X-ray Crystallography

Pros
Can do small and big proteins
Relatively cheap

Cons
Has to crystallise!
Typically captures one conformation
Can have crystal packing artefacts

/ Cryo-EM \

Pros
Small amounts of sample
No “phase problem”

Cons
Can’t do small proteins (<150kDa)

Expensive

\\Protein must tolerate freeziry

CAMBRIDGE



Experimental structure determination

* Today we learnt about how to experimentally determine a structure

* Techniques for determining structures
* How to collect and process structural data
* How to build a new structure

* How to judge the quality of a structure

e Tomorrow we will learn how to
* Predict a structure using AlphaFold

 How to evaluate the quality of this prediction
 What AlphaFold can (and can’t) do

#B> UNIVERSITY OF

%" CAMBRIDGE
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