

Looking at Protein Structures

Day 8: Tuesday 29th March

This talk

- Representations of proteins
- Mapping properties onto proteins
- Accessing protein structures
- Software for viewing protein structures
- Analysing structural similarity
- Inspecting protein interfaces

Recap of protein structure

- Proteins are polymers of amino acids
- The sequence of a proteins determines how it folds
- Proteins adopt regular secondary structure
- The arrangement of secondary structural motifs determines protein 3D structure
- Some proteins oligomerise or interact with ligands that are integral to their structure

Interactions between amino acids drive protein folding

- Hydrogen bonds
 - Hydrogen shared between electronegative 'donor' and 'acceptor' atom with lone electron pair

Interactions between amino acids drive protein folding

• Hydrogen bonds

- Hydrogen shared between electronegative 'donor' and 'acceptor' atom with lone electron pair
- Salt bridges
 - Between side chains with formal negative and positive charges

Interactions between amino acids drive protein folding

- Hydrogen bonds
 - Hydrogen shared between electronegative 'donor' and 'acceptor' atom with lone electron pair
- Salt bridges
 - Between side chains with formal negative and positive charges
- Hydrophobic interaction
 - Van der Waals interactions
- Hiding hydrophobic residues from water in protein core drives folding

- Amino acids are joined by peptide bonds
 - Planar
 - *trans* (180°) or *cis* (0°)

- Amino acids are joined by peptide bonds
 - Planar
 - *trans* (180°) or *cis* (0°)
- Angle between peptide (amide nitrogen) and side chain is phi (φ)

- Amino acids are joined by peptide bonds
 - Planar
 - *trans* (180°) or *cis* (0°)
- Angle between peptide (amide nitrogen) and side chain is phi (φ)
- Angle between side chain and peptide (carbonyl oxygen) is psi (ψ)

Ramachandran plot

- Only certain ψ/ϕ combinations are allowed
 - Cβ atoms would bump into each other
 - Different for glycine (no C β) and proline [C δ -N(amide) bond]
- Some areas of the Ramachandran plot are highly populated

Ramachandran plot

- Only certain ψ/ϕ combinations are allowed
 - Cβ atoms would bump into each other
 - Different for glycine (no C β) and proline [C δ -N(amide) bond]
- Many residues occupy certain regions of the Ramachandran plot:
 - α-helix
 - β-sheet

α -helix

• O(carbonyl) makes **hydrogen bond** with N(amide) of i+3 residue

α -helix

- O(carbonyl) makes **hydrogen bond** with N(amide) of i+3 residue
- Helices are right handed

β -sheet

- Hydrogen bonds between adjacent strands
- **Parallel:** strands in same direction
- Anti-parallel strands in opposite directions

Not all amino acids are in helices or sheets

- Loops (between secondary structural elements)
- Coil (extended regions with no secondary structure)

Not all amino acids are in helices or sheets

- Loops (between secondary structural elements)
- Coil (extended regions with no secondary structure)
- Some regions of proteins have no intrinsic structure
 - Adopt conformation upon binding to partner molecules
 - Biomolecular condensates (membrane-less organelles)

• Displaying just the atoms as **spheres** is very hard to interpret

- Displaying just the atoms as **spheres** is very hard to interpret
- Showing bonds between the atoms as sticks helps

- Displaying just the atoms as **spheres** is very hard to interpret
- Showing bonds between the atoms as **sticks** helps

- Displaying just the atoms as **spheres** is very hard to interpret
- Showing bonds between the atoms as sticks helps
- Easier to follow the trace with a cartoon (or ribbon) representation
 - Helices as spirals
 - Sheets as arrows

- Displaying just the atoms as **spheres** is very hard to interpret
- Showing bonds between the atoms as sticks helps
- Easier to follow the trace with a cartoon (or ribbon) representation
 - Helices as spirals
 - Sheets as arrows
- And even better if you colour as a rainbow
 - Blue at N terminus to red at C terminus

Surfaces

- Cartoons are convenient for following peptide direction
 - But proteins don't have big gaps
 - The interior of proteins is largely hydrophobic and inaccessible to water

Surfaces

- Cartoons are convenient for following peptide direction
 - But proteins don't have big gaps
 - The interior of proteins is largely hydrophobic and inaccessible to water
- Can display the surface of proteins

Surfaces

- Cartoons are convenient for following peptide direction
 - But proteins don't have big gaps
 - The interior of proteins is largely hydrophobic and inaccessible to water
- Can display the surface of proteins
- Most common surface representation is the molecular surface (aka Connelly surface)

SAS: Solvent-accessible surfaceSES: Molecular surface (solvent-excluded surface)VWS: Van der Waals surface

Surface representations

Surface representations – Electrostatic potential

- Can map the electrostatic potential of a protein onto its molecular surface
 - **Blue** = basic = positive charge
 - **Red** = acidic = negative charge
- Understanding protein electrostatic charge can inform biology
 - Long-range interactions between macromolecules
 - Interaction patches for charged small molecules

Surface representations – Hydrophobicity

- Surface-exposed hydrophobic patches are energetically unfavourable
- Can colour surfaces of proteins to show the hydrophobicity of each residue at the surface

Surface representations – Hydrophobicity

- Surface-exposed hydrophobic patches are energetically unfavourable
- Can colour surfaces of proteins to show the hydrophobicity of each residue at the surface
- Can also show molecular lipophilicity potential
 - Slightly more sophisticated, per-atom potential

Protein Data Bank (PDB)

- Worldwide repository of biomolecular structural data
 - Established in 1971
- Hold both the atomic models plus the experimental data (maps) used to generate these models
- Hosted by three different institutions:
 - RCSB: <u>https://www.rcsb.org/</u>
 - EBI: <u>https://www.ebi.ac.uk/pdbe/</u>
 - PDBj: <u>https://pdbj.org/</u>
 - Each site has different tools and search, but the underlying data is the same

he two organizations will work togethe

ead about a project aimed to test and

support of the Open Science Data

Eederation and the RCSB PDB to

ensure fast and easy access for

researchers in Asia and Oceania

Small Angle Scattering News

Crvo-FM structure of Arabidopsis SPY

.........

alternative conformation 2

https://www.rcsb.org/

evolution, new validation tools, and

mplications for the future in a special

issue of Biophysical Reviews dedicated

to Haruki Nakamura

Molecular Landscapes

New painting: Caulobacter Polar

... 02/28/2023

Protein Data Bank (PDB)

🖿 Display Files 🗸	🕒 Download Files 🗸			
FASTA Sequence				
PDBx/mmCIF Format				
PDBx/mmCIF Format (gz)				
PDB Format				
PDB Format (gz)				
PDBML/XML Form	at (gz)			
Structure Factors (CIF)			
Structure Factors (CIF - gz)			
Validation Full PDF				
Validation XML				
Validation CIF				
Biological Assembly	y 1 (CIF - gz) 🕄			
Biological Assembly	y 1 (PDB - gz)			
fo-fc Map (DSN6)				
2fo-fc Map (DSN6)				
Map Coefficients (N	/ITZ format)			

>7PHY_1	Chain A	Protein	E2 Vaccinia	a virus WR	(10254)			
MISVTDIR	RAFLONEO	HTITKAFG	YLHEDKAIALI	IKIGFHPTYL	PKVLYNNV	VEFVPEKLYL	FKPRTVAPL	DLISTIT
IINDIRRG	KIDYYIPY	VEDFLEDR	TEDLGIYANI	FEDAIDITK	LDITKTEL	EHISKYMNYY	TTYIDHIVN	[] LQNNY]
EENRNIVY	KKNNRVLO	FDSLENSA	FKSLIKIDSI	PGLKTYNMKD	ITYEKSNN	IICVRFIPQE	SIHNEERRIN	(LQLFDIA
VCVETILD	NNQSFKSS	5 КАААНННН	ннннн					

Display Files - ODownload Files -	
FASTA Sequence	• F49
PDBx/mmCIF Format	
PDBx/mmCIF Format (gz)	
PDB Format	
PDB Format (gz)	
PDBML/XML Format (gz)	
Structure Factors (CIF)	
Structure Factors (CIF - gz)	
Validation Full PDF	
Validation XML	
Validation CIF	
Biological Assembly 1 (CIF - gz) 6	
Biological Assembly 1 (PDB - gz)	
fo-fc Map (DSN6)	
2fo-fc Map (DSN6)	
Map Coefficients (MTZ format)	

• FASTA sequence

data_7PHY

_entry.id 7PHY

audit conform.dict name mmcif pdbx.dic audit conform.dict version 5.354 audit_conform.dict_location http://mmcif.pdb.org/dictionaries/ascii/mmcif_pdbx.dic

loop

database 2.database id database 2.database code _database_2.pdbx_database_accession database 2.pdbx DOI pdb_00007phy 10.2210/pdb7phy/pdb PDB 7PHY WWPDB D 1292117740 ?

_pdbx_database_status.status_code	REL
_pdbx_database_status.status_code_sf	REL
_pdbx_database_status.status_code_mr	?
_pdbx_database_status.entry_id	7PHY
_pdbx_database_status.recvd_initial_deposition_date	2021-08-19
_pdbx_database_status.SG_entry	N
_pdbx_database_status.deposit_site	PDBE
_pdbx_database_status.process_site	PDBE
_pdbx_database_status.status_code_cs	?
_pdbx_database_status.status_code_nmr_data	?
_pdbx_database_status.methods_development_category	?
_pdbx_database_status.pdb_format_compatible	Y
_pdbx_database_status.pdb_format_compatible	Y

loop

audit author.name audit_author.pdbx_ordinal audit author.identifier ORCID 'Gao, W.N.D.' 1 ? 'Gao. C.' 2 ? 'Graham, S.C.' 3 0000-0003-4547-4034

citation.abstract citation.abstract id CAS citation.book publisher

Map Coefficients (MTZ format)

- FASTA sequence
- mmCIF format
| HEADER | VIRAL PROTEIN | 19-AUG-21 | 7PHY | | | | | | | |
|--------|---|--|--------------------|--|--|--|--|--|--|--|
| TITLE | VACCINIA VIRUS E2 | | | | | | | | | |
| COMPND | MOL ID: 1; | | | | | | | | | |
| COMPND | 2 MOLECULE: PROTEIN E2: | | | | | | | | | |
| COMPND | 3 CHAIN: A; | | | | | | | | | |
| COMPND | 4 ENGINEERED: YES | | | | | | | | | |
| SOURCE | MOL_ID: 1; | | | | | | | | | |
| SOURCE | 2 ORGANISM_SCIENTIFIC: VACCINIA VIRUS N | WR; | | | | | | | | |
| SOURCE | 3 ORGANISM_TAXID: 10254; | | | | | | | | | |
| SOURCE | 4 GENE: VACWR058, E2L; | | | | | | | | | |
| SOURCE | 5 EXPRESSION_SYSTEM: HOMO SAPIENS; | | | | | | | | | |
| SOURCE | 6 EXPRESSION_SYSTEM_COMMON: HUMAN; | | | | | | | | | |
| SOURCE | 7 EXPRESSION_SYSTEM_TAXID: 9606; | | | | | | | | | |
| SOURCE | 8 EXPRESSION_SYSTEM_CELL_LINE: FREESTY | LE 293-F; | | | | | | | | |
| SOURCE | <pre>9 EXPRESSION_SYSTEM_VECTOR_TYPE: PLASM</pre> | ID; | | | | | | | | |
| SOURCE | 10 EXPRESSION_SYSTEM_PLASMID: PCDNA3.1 | 10 EXPRESSION SYSTEM PLASMID: PCDNA3.1 | | | | | | | | |
| KEYWDS | ASSEMBLY, EGRESS, VIRAL PROTEIN | | | | | | | | | |
| EXPDTA | X-RAY DIFFRACTION | | | | | | | | | |
| AUTHOR | W.N.D.GAO,C.GAO,S.C.GRAHAM | | | | | | | | | |
| REVDAT | 2 09-FEB-22 7PHY 1 JRNL | | | | | | | | | |
| REVDAT | 1 01-SEP-21 7PHY 0 | | | | | | | | | |
| JRNL | AUTH W.N.D.GAO,C.GAO,J.E.DEANE,D.(| C.J.CARPENTIE | R,G.L.SMITH, | | | | | | | |
| JRNL | AUTH 2 S.C.GRAHAM | | | | | | | | | |
| JRNL | TITL THE CRYSTAL STRUCTURE OF VAC | CINIA VIRUS P | ROTEIN E2 AND | | | | | | | |
| JRNL | TITL 2 PERSPECTIVES ON THE PREDICTION | ON OF NOVEL V | IRAL PROTEIN FOLDS | | | | | | | |
| JRNL | REF J.GEN.VIROL. | V. 103 | 2022 | | | | | | | |
| JRNL | REFN ESSN 1465-209 | 99 | | | | | | | | |
| JRNL | PMID 35020582 | | | | | | | | | |
| JRNL | DOI 10.1099/JGV.0.001716 | | | | | | | | | |
| REMARK | 2 | | | | | | | | | |
| REMARK | 2 RESOLUTION. 2.30 ANGSTROMS. | | | | | | | | | |
| REMARK | 3 | | | | | | | | | |
| REMARK | 3 REFINEMENT. | | | | | | | | | |
| REMARK | 3 PROGRAM : PHENIX 1.19.2_4158 | | | | | | | | | |
| REMARK | 3 AUTHORS : PAUL ADAMS, PAVEL AFO | NINE, VINCENT | CHEN,IAN | | | | | | | |
| REMARK | 3 : DAVIS,KRESHNA GOPAL,I | RALF GROSSE-K | UNSTLEVE, | | | | | | | |
| REMARK | 3 : LI-WEI HUNG, ROBERT IN | MORMINO, TOM | IOERGER, | | | | | | | |

FRSITY OF

DGE

■ Display Files
FASTA Sequence
PDBx/mmCIF Format
PDBx/mmCIF Format (gz)
PDB Format
PDB Format (gz)
PDBML/XML Format (gz)
Structure Factors (CIF)
Structure Factors (CIF - gz)
Validation Full PDF
Validation XML
Validation CIF
Biological Assembly 1 (CIF - gz) 3
Biological Assembly 1 (PDB - gz)
fo-fc Map (DSN6)
2fo-fc Map (DSN6)
Map Coefficients (MTZ format)

- FASTA sequence
- mmCIF format
- PDB format

a_r7physf:

ŧ							
_audit.revision_id	1	_ 0					
_audit.creation_da	te ?						
_audit.update_recc ±	rd ']	Initia	l releas	e '			
cell entry id	7nhv						
cell length a	77.16	57					
cell length h	90.93	25					
cell length c	147 3	285					
cell angle alpha	90 00	100					
cell angle beta	90.00	90					
cell angle gamma	90.00	90					
t	50.00	,0					
, diffrn radiation	waveler	nath i	d	1			
diffrn radiation	waveler	nath.w	avelenati	h ⊕.9'	79419		
	navecci	igen . n	ave cenge	0.5			
entry id 7nhv							
t							
exntl crystal id	1						
t	-						
reflns scale.grou	n code	1					
terens_searcrigioe	p_couc	-					
symmetry entry ic			7nhv				
symmetry.space or	oun nar	ne H-M	'P 21	21 21'			
symmetry Int Tabl	es num	her	19				
oon							
refln.crvstal id							
refln.wavelength	id						
refln.scale group	code						
refln.index h							
refln.index k							
refln.index l							
refln.status							
_ 	flag						
refln.Fmeas_au							
refln.F_meas_sign	a_au						
	eas						
refln.intensity_s	igma						
_refln.pdbx_I_plus							
_refln.pdbx_I_plus	_sigma						
_refln.pdbx_I_minu	ls -						
_refln.pdbx_I_minu	s_sigma	a					
L1100405	0.39	Θ.24	θ.13	0.36	θ.13	0.36	θ.13
L1100601	2 0.41	θ.27	-0.06	0.55	-0.06	0.55	-0.06
L1100802	62.53	3 0.52	3914.12	65.37	3914.12	65.37	3914.12
L 1 1 0 0 10 o 1	6 35.36	5 0.26	1250.50	18.32	1250.50	18.32	1250.50
11001201	2 36.76	5 0.27	1351.74	19.85	1351.74	19.85	1351.74
11001401	3 15.72	2 0.13	247.08	4.20	247.08	4.20	247.08
L 1 1 0 0 16 o 5	50.6	7 0.43	2570.18	43.27	2570.18	43.27	2570.18
11001801	5 69.78	θ.51	4875.60	70.64	4875.60	70.64	4875.60
L 1 1 0 0 20 o 1	3 4.00	0.23	16.14	1.81	16.14	1.81	16.14
L 1 1 0 0 22 o 1	0 19.34	↓ 0.17	374.32	6.41	374.32	6.41	374.32
L 1 1 0 0 24 o 1	6 11.4	7 0.20	131.84	4.66	131.84	4.66	131.84
L 1 1 0 0 26 o 5	10.59	0.15	112.24	3.21	112.24	3.21	112.24
L11002801	5.73	0.26	33.06	3.00	33.06	3.00	33.06

Display Files 🗸	④ Download Files →
FASTA Sequence	
PDBx/mmCIF Form	nat
PDBx/mmCIF Form	nat (gz)
PDB Format	
PDB Format (gz)	
PDBML/XML Forma	at (gz)
Structure Factors (CIF)
Structure Factors (CIF - gz)
Validation Full PDF	
Validation XML	
Validation CIF	
Biological Assembly	/ 1 (CIF - gz) 🕄
Biological Assembly	/ 1 (PDB - gz)
fo-fc Map (DSN6)	
2fo-fc Map (DSN6)	
Map Coefficients (N	ATZ format)

- FASTA sequence
- mmCIF format
- PDB format
- Structure factors (experimental data)

Aug 25, 2021 - 02:02 pm BST

PDB ID : 7PHY Title : Vaccinia virus E2 Authors : Gao, W.N.D.; Gao, C.; Graham, S.C. Deposited on : 2021-08-19 Resolution : 2.30 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the ① symbol.

- Ownload Files -Display Files -FASTA Sequence PDBx/mmCIF Format PDBx/mmCIF Format (gz) PDB Format PDB Format (gz) PDBML/XML Format (gz) Structure Factors (CIF) Structure Factors (CIF - gz) Validation Full PDF Validation XML Validation CIF Biological Assembly 1 (CIF - gz) 3 Biological Assembly 1 (PDB - gz) fo-fc Map (DSN6) 2fo-fc Map (DSN6) Map Coefficients (MTZ format)
 - FASTA sequence
 - mmCIF format
 - PDB format
 - Structure factors (experimental data)
 - Validation report

Display Files ▼
FASTA Sequence
PDBx/mmCIF Format
PDBx/mmCIF Format (gz)
PDB Format
PDB Format (gz)
PDBML/XML Format (gz)
Structure Factors (CIF)
Structure Factors (CIF - gz)
Validation Full PDF
Validation XML
Validation CIF
Biological Assembly 1 (CIF - gz) 0
Biological Assembly 1 (PDB - gz)
fo-fc Map (DSN6)
2fo-fc Map (DSN6)
Map Coefficients (MTZ format)

- FASTA sequence
- mmCIF format
- PDB format
- Structure factors (experimental data)
- Validation report
- Assembly

VERSITY OF

MBRIDGE

Display Files
FASTA Sequence
PDBx/mmCIF Format PDBx/mmCIF Format (gz)
PDB Format
PDB Format (gz)
PDBML/XML Format (gz)
Structure Factors (CIF)
Structure Factors (CIF - gz)
Validation Full PDF Validation XML
Validation CIF
Biological Assembly 1 (CIF - gz) 0
Biological Assembly 1 (PDB - gz)
fo-fc Map (DSN6)
2fo-fc Map (DSN6) Map Coefficients (MTZ format)

- FASTA sequence
- mmCIF format
- PDB format
- Structure factors (experimental data)
- Validation report
- Assembly
- Maps

SHORT COMMUNICATION Gao et al., Journal of General Virology 2022;103:001716 DOI 10.1099/jqv.0.001716

<u>access</u>

The crystal structure of vaccinia virus protein E2 and perspectives on the prediction of novel viral protein folds

William N. D. Gao¹, Chen Gao¹, Janet E. Deane², David C. J. Carpentier¹, Geoffrey L. Smith¹ and Stephen C. Graham^{1,*}

Abstract

The morphogenesis of vaccinia virus (VACV, family *Poxviridae*), the smallpox vaccine, is a complex process involving multiple distinct cellular membranes and resulting in multiple different forms of infectious virion. Efficient release of enveloped virions, which promote systemic spread of infection within hosts, requires the VACV protein E2 but the molecular basis of E2 function remains unclear and E2 lacks sequence homology to any well-characterised family of proteins. We solved the crystal structure of VACV E2 to 2.3 Å resolution, revealing that it comprises two domains with novel folds: an N-terminal annular (ring) domain and a C-terminal globular (head) domain. The C-terminal head domain displays weak structural homology with cellular (pseudo)kinases but lacks conserved surface residues or kinase features, suggesting that it is not enzymatically active, and possesses a large surface basic patch that might interact with phosphoinositide lipid headgroups. Recent deep learning methods have revolutionised our ability to predict the three-d¶mensional structures of proteins from primary sequence alone. VACV E2 is an exemplar 'difficult' virial protein target for structure prediction, being comprised of multiple novel domains and lacking sequence homologues outside *Poxviridae*. AlphaFold2 nonetheless succeeds in predicting the structural properties. The advent of highly accurate virus structure prediction marks a step-change in structural virology and beckons a new era of structurally-informed molecular virology.

Vaccinia virus (VACV) is the prototype member of the *Poxviridae*, a family of DNA viruses producing large and complex enveloped virions [1]. The family includes variola virus, the causative agent of the highly infectious and lethal disease smallpox, and several viruses endemic in a variety of animal species, some linked with increasing incidences of zoonotic spread and disease in humans [2–4]. While a concerted vaccination programme led to the WHO declaring smallpox eradicated in 1980, the potential for re-emergence of poxirus disease remains and only two drugs, TPOXX and Tembexa, are licenced for the treatment of orthopoxvirus infection.

Orthopoxviruses produce two distinct types of infectious virion, mature virions (MV's, also called intracellular mature virions, IMV's) and enveloped virions (EV's, also known as extracellular enveloped virions, EEV's). MV's are formed in cytoplasmic viral factories, where the genome-containing viral core and lateral bodies are wrapped by a single lipid membrane derived from the endoplasmic reticulum [5]. MV's are highly stable and, when released upon cell lysis, can survive in the environment to mediate horizontal spread to new hosts. However, MV's are susceptible to recognition by host adaptive immune response due to the abundance of conserved viral epitopes on their surface, including components of the virus membrane fusion and entry machinery. Prior to cell lysis a proportion of MV's are trafficked on microtubules to sites enriched in trans-Golgi/early endosome derived membranes, where they are wrapped by two additional envelopes to form intracellular enveloped virions (IEV, also known as wrapped virus, WV). These IEV's recruit the cellular kinesin-1 microtubule-associated motor complex to mediate virion trafficking to the cell periphery [6–9], whereupon the outer IEV envelope fuses with the cell membrane to release EV's

Accessing protein structural models

	tide search ID mapping SP,	ARQL UniProtKB •		Advanced List	Search 🏯 🔐 🖸 I
Function	😓 Q9BY43 ·	CHM4A_HUMAN			
Names & Taxonomy	Protein ⁱ	Charged multivesicular body protein 4a	Amino acids	222	
Subcellular Location	Gene ⁱ	CHMP4A	Protein existence ⁱ	Evidence at protein level	
Disease & Variants	Status ⁱ	OniProtKB reviewed (Swiss-Prot)	Annotation score ⁱ	5/5	
PTM/Processing	Organism ⁱ	Homo sapiens (Human)			
Expression	Entry Feature view	ver Publications External links History			
Interaction					
Structure	BLAST Align 土 Down	load 🔹 🇰 Add 🛛 Add a publication 🛛 Entry feedback			
Family & Domains	Function				
Sequence & Isoform	Probable core compon	ent of the endosomal sorting required for transport co	mplex III (ESCRT-III) which is involved in multive	sicular bodies (MVBs) formation and sorting o	of endosomal cargo
Similar Proteins	proteins into MVBs. M enabling degradation o	VBs contain intraluminal vesicles (ILVs) that are genera of membrane proteins, such as stimulated growth facto	ited by invagination and scission from the limitin r receptors, lysosomal enzymes and lipids. The M	g membrane of the endosome and mostly are IVB pathway appears to require the sequentia	delivered to lysosomes al function of ESCRT-O, -I,-
	II and -III complexes. ES	SCRT-III proteins mostly dissociate from the invaginati	ng membrane before the ILV is released. The ESC	CRT machinery also functions in topologically	equivalent membrane
	fission events, such as t extrusion and/or memb	the terminal stages of cytokinesis and the budding of e prane fission activities, possibly in conjunction with the	nveloped viruses (HIV-1 and other lentiviruses). I AAA ATPase VPS4. When overexpressed memb	ESCRT-III proteins are believed to mediate the brane-assembled circular arrays of CHMP4A f	e necessary vesicle filaments can promote or
	stabilize negative curva	ature and outward budding. Via its interaction with PD	CD6IP involved in HIV-1 p6- and p9-dependent	virus release. CHMP4A/B/C are required for t	the exosomal release of
	SDCBP, CD63 and sync	decan (PubMed:22660413). 📕 6 Publications			

https://www.uniprot.org/

Accessing protein structural models

https://www.uniprot.org/

• Many, many different programs for viewing proteins structures for analysis and illustration:

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors

REMARK		
REMARK	REFINEMENT.	
REMARK	PROGRAM : PHENIX (1.19.2_4158: ???)	
REMARK	AUTHORS : Adams,Afonine,Bunkoczi,Burnley,Chen,Dar,Davis,	
REMARK	: Draizen,Echols,Gildea,Gros,Grosse-Kunstleve,Headd,	
REMARK	: Hintze,Hung,Ioerger,Liebschner,McCoy,McKee,Moriarty,	
REMARK	: Oeffner, Poon, Read, Richardson, Richardson, Sacchettini,	
REMARK	: Sauter, Sobolev, Storoni, Terwilliger, Williams, Zwart	
REMARK		
REMARK	X-RAY DATA.	
REMARK		
REMARK	REFINEMENT TARGET : ML	
REMARK		
REMARK	DATA USED IN REFINEMENT.	
REMARK	RESOLUTION RANGE HIGH (ANGSTROMS) : 2.30	Vim
REMARK	RESOLUTION RANGE LOW (ANGSTROMS) : 35.52	
1		

Z:\Projects\Old\CamPath\VACV\E2\final_structure\VACV_E2_refine_20.pdb - Notepad++

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?]o 🚔 🖶 🕞 🕞 🍋 🙏 🔏 睮 📄 🕽 🧲 🏥 🍓 🤏 🍕 ⊑ 📮 🚍 👫 🎙 🎉 🚳 🌘 🗈 💌 💌 💌 💌

🔚 new 1	1 🗵 🔚 140	906_	malonate_interface.pml 🗵 🔚 VACV_E2_refine_20.pdb 🖸	
1	REMARK	3		
2	REMARK	3	REFINEMENT.	
3	REMARK	3	PROGRAM : PHENIX (1.19.2_4158: ???)	
4	REMARK	3	AUTHORS : Adams, Afonine, Bunkoczi, Burnley, Chen, Dar, Davis,	
5	REMARK	3	: Draizen, Echols, Gildea, Gros, Grosse-Kunstleve, Headd,	
6	REMARK	3	: Hintze, Hung, Ioerger, Liebschner, McCoy, McKee, Moriart	Υ,
7	REMARK	3	: Oeffner, Poon, Read, Richardson, Richardson, Sacchettin	i,
8	REMARK	3	: Sauter, Sobolev, Storoni, Terwilliger, Williams, Zwart	
9	REMARK	3		
10	REMARK	3	X-RAY DATA.	
11	REMARK	3		
12	REMARK	3	REFINEMENT TARGET : ML	
13	REMARK	3		
14	REMARK	3	DATA USED IN REFINEMENT.	
15	REMARK	3	RESOLUTION RANGE HIGH (ANGSTROMS) : 2.30	
16	REMARK	3	RESOLUTION RANGE LOW (ANGSTROMS) : 35.52	
17	REMARK	3	MIN(FOBS/SIGMA_FOBS) : 1.34	_
18	DEMARK	3	COMPLEIENESS FOR RANGE (%) : 99.59	Natanadu
20	DEMARK	2	NUMBER OF REFLECTIONS (NON-NOMATONS) - ACCAC	notebadt
20	DEMADY		NONDER OF REFLECTIONS (NON-ANONALOUS) . 46506	
22	REMARK	3	FIT TO DATA USED IN REFINEMENT	1
23	REMARK	3	R VALUE (WORKING + TEST SET) : 0.1943	https://notepa
24	REMARK	3	R VALUE (WORKING SET) : 0.1919	incepair, notepa
25	REMARK	3	FREE R VALUE : 0.2370	mlus mlus ara/
26	REMARK	3	FREE R VALUE TEST SET SIZE (%) : 5.14	plus-plus.org/
27	REMARK	3	FREE R VALUE TEST SET COUNT : 2396	·

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX

https://www.cgl.ucsf.edu/chimerax/

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL

https://github.com/schrodinger/pymol-open-source

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL
- There are open source and paid-for versions of PyMOL. It's easy to install the free open source version:

https://pymolwiki.org/index.php/Windows_Install https://pymolwiki.org/index.php/MAC_Install

https://github.com/schrodinger/pymol-open-source

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL
 - COOT

cessfully read coordinates file pdb3ogo.ent-coot-0.pdb. Molecule number 0 create

https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL
 - COOT
 - CCP4mg

https://www.ccp4.ac.uk/MG/

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL
 - COOT
 - CCP4mg
 - Mol*

https://molstar.org/

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL
 - COOT
 - CCP4mg
 - Mol*
 - Protein Imager

https://3dproteinimaging.com/protein-imager/

- Many, many different programs for viewing proteins structures for analysis and illustration:
 - Text editors (notepad!)
 - ChimeraX
 - PyMOL
 - COOT
 - CCP4mg
 - Mol*
 - Protein Imager
 - Blender (with Molecular Nodes)

https://bradyajohnston.github.io/MolecularNodes/

Measures of protein structural similarity

- Sequence identity is a measure of amino acid sequence similarity
 - High identity suggests evolutionary similarity
- Proteins can have similar structures in absence of similar sequences
- How do we measure protein structure similarity?

Vaccinia virus proteins A49 (left) and A52 (right) Very similar structures but no sequence identity was unidentifiable

Root mean squared deviation (RMSD)

- Where δ is the distance between two equivalent atoms
- Generally measured between $C\alpha$ atoms
- When quoting, need to specify both RMSD and number of matched atoms
- Exist several more advanced measures (normalised RMSD, GDT_TS, ...)
- Can calculate in ChimeraX, PyMOL, COOT, ...

How can you find other structures similar to your protein of interest?

Structure-based searches: DALI

http://ekhidna2.biocenter.helsinki .fi/dali/

 Can search databases of experimental structures and AlphaFold2 models

The Dali server is a network service for comparing protein structures in 3D. You submit the coordinates of a query protein structure and Dali compares them against those in the Protein Data Bank (PDB). In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences.

Check queue status <u>here</u>. Megausers please consider downloading the standalone program.

You can perform three types of database searches:

- Heuristic <u>PDB search</u> compares one query structure against those in the Protein Data Bank
- Exhaustive <u>PDB25</u> search compares one query structure against a representative subset of the Protein Data Bank
- Hierarchical <u>AF-DB</u> search compares one query structure against a species subset of the AlphaFold Database

and two types of structure comparisons of user selected structures:

- <u>Pairwise</u> structure comparison compares one query structure against those specified by the user
- <u>All against all</u> structure comparison returns a structural similarity dendrogram for a set of structures specified by the user

Citation:

 Holm L (2022) <u>Dali server: structural unification of protein families</u>. Nucleic Acids Research 50, W210-W215

Structure-based searches: DALI

http://ekhidna2.biocenter.helsinki .fi/dali/

- Can search databases of experimental structures and AlphaFold2 models
- Search results order by Z score (statistical significance)
- Uses all residue pairwise distance matrices, not RMSD
- Z scores above 7 or so are likely to be meaningful

Results: 7phyA

Query: 7phyA

MOLECULE: PROTEIN E2;

Select neighbours (check boxes) for viewing as multiple structural alignment or 3D superimposition. The list of neighbours is sorted by Z-score. Similarities with a Z-score lower than 2 are spurious. Each neighbour has links to pairwise structural alignment with the query structure, and to the PDB format coordinate file where the neighbour is superimposed onto the query structure.

Structural Alignment 🗹 Expand gaps 3D Superimposition (PV) SANS PANZ Pfam Reset Selection

Summary

No	: Chain	Z	rm	sd la	li nre	s %id PD	B Descript	tion
1 :	7phy-A	54.5	0.0	732	732	100 <u>PDB</u>	MOLECULE:	PROTEIN E2;
□ 2 :	6plm-B	10.3	4.8	256	752	10 <u>PDB</u>	MOLECULE:	SIDJ PROTEIN;
🗆 з:	7r5s-I	4.9	15.1	176	622	7 <u>PDB</u>	MOLECULE:	CENTROMERE PROTEIN H;
4 :	1z2c-B	4.8	18.7	127	346	8 <u>PDB</u>	MOLECULE:	RHO-RELATED GTP-BINDING PROTEIN RHOC;
□ 5 :	6yle-D	4.7	9.8	139	547	5 <u>PDB</u>	MOLECULE:	PRE-RRNA-PROCESSING PROTEIN IPI3;
6:	4lnb-A	4.7	10.0	156	339	6 <u>PDB</u>	MOLECULE:	CAAX FARNESYLTRANSFERASE ALPHA SUBUNIT RAM2;
□ 7:	3dad-A	4.5	10.1	104	324	13 <u>PDB</u>	MOLECULE:	FH1/FH2 DOMAIN-CONTAINING PROTEIN 1;
8:	8e2f-A	4.4	12.0	140	771	4 <u>PDB</u>	MOLECULE:	BACULOVIRAL IAP REPEAT-CONTAINING PROTEIN 6;
□ 9:	7uwf-C	4.3	12.1	119	517	5 <u>PDB</u>	MOLECULE:	WD REPEAT-CONTAINING PROTEIN 18;
10:	6dee-A	4.2	13.7	125	382	6 <u>PDB</u>	MOLECULE:	NCK-INTERACTING PROTEIN WITH SH3 DOMAIN;
□ 11:	4d01-E	4.2	14.3	110	479	10 <u>PDB</u>	MOLECULE:	PHOSPHATIDYLINOSITOL 4-KINASE BETA;
□ 12:	7zkq-C	4.2	8.0	122	416	9 <u>PDB</u>	MOLECULE:	NADH DEHYDROGENASE SUBUNIT 2;
13:	4imj-A	4.1	14.4	139	333	5 <u>PDB</u>	MOLECULE:	SYMPLEKIN;
14:	7x9r-A	4.1	19.4	153	448	8 <u>PDB</u>	MOLECULE:	GLYCOSYL TRANSFERASE FAMILY 2;
15 :	4cem-B	4.1	3.8	122	309	4 <u>PDB</u>	MOLECULE:	REGULATOR OF NONSENSE TRANSCRIPTS 2;
□ 16 :	4ww9-A	4.1	3.7	125	238	11 <u>PDB</u>	MOLECULE:	EKC/KEOPS COMPLEX SUBUNIT BUD32;
17:	6yai-M	4.0	16.8	168	518	13 <u>PDB</u>	MOLECULE:	CLATHRIN HEAVY CHAIN;
18 :	6j6g-v	3.9	24.8	153	722	7 <u>PDB</u>	MOLECULE:	PRE-MRNA-SPLICING FACTOR 8;
□ 19:	5wy3-B	3.9	7.5	118	366	4 <u>PDB</u>	MOLECULE:	PUTATIVE UNCHARACTERIZED PROTEIN;
□ 20:	514k-P	3.9	17.4	138	456	3 <u>PDB</u>	MOLECULE:	265 PROTEASOME NON-ATPASE REGULATORY SUBUNIT 4;

Structure-based searches: PDBeFold

https://www.ebi.ac.uk/ msd-srv/ssm/

- Searches against PDB or a list of structures you supply
 - Can do all-vs-all pairwise superposition

Protein Data Bank Europe PDBeFold Protein Data Bank Europe PDBeFold Image: Structure to Biology Image: Structure to Biology Image: Structure to Biology Image: Structure to Biology Image: Structure to Biology Image: Structure to Biology Image: Structure to Biology Image: Structure Structure Structure Structure Structure Structure Structure Structure To similarity. Image: Structure to Biology PDBeFold Inclinality. Image: Structure Structure To similarity with the whole <u>PDB archite</u> or <u>SCOP</u> archite Image: Structure Struct	EMBL-EBI 🍥				Services	Research	Training About us	Q
 Strain Biolog PDBeFold Infos PAQ • Kasilastian • Peformance • Wixay • Wixay	Protein Dat in Europe	ta Bank		PDBeFold				
 PDBeFold links PAR PAR PAR PAR PAR PAR	Bringing Structure to	Biology						
 PDBeFold Inks FAQ Visualization Performance Porformance								< Share 🔎 Feedback
	 PDBeFold links FAQ Visualisation Performance Privacy Version log PDBeFold Links Comparisons Publications PDBeFOLD tutorial Other links Other links CCP4 CoorLib Rastop Jmol PDB SCOP PDBeMotif GeneCensus FSSP CATH PDBsum UniProt 	PDBeFold functionality: • pairwise comparison and • multiple comparison and • examination of a protein • best Co-alignment of com • download and visualisatic • linking the results to other • Launch PDBeFold PDBeFold A comparison with other PDBeFold is used as a structure see PDBeFold is used as a structure see PDBeFold is used as a structure see PDBeFold gueries may be launched We welcome your feedback! P	Structure Similarity. 3D alignment of protein structures 3D alignment of protein structures structure for similarity with the wh structures structures un of obest-superposed structures un in of best-superposed structures un r protein matching services. arch engine in <u>PDBePISA</u> . I from any web alte (<u>Instructions</u>). Wease send any questions, comments, su	s s hole <u>PDB archive</u> or <u>SCOP</u> archive using <u>Rasmol</u> (Unix/Linux platforms), <u>Rastop</u> (neCensus, FSSP, CATH, <u>PDBSum</u> , <u>UniProt</u> uggestions and bug reports using the FEEDBACK butto	Windows machines) and	d <u>Jmol</u> (platfor	m-independent server-si	de java viewer)

Structure-based searches: PDBeFold

https://www.ebi.ac.uk/ msd-srv/ssm/

- Searches against PDB or a list of structures you supply
 - Can do all-vs-all pairwise superposition
- Uses RMSD
- Reports Q score (1 is perfect) an Z score (higher is better)

Sequence/Structure based search: Foldseek

https://search.foldseek.com/ search

- Combines sequence analysis and structure analysis using deep learning
- Much faster than other techniques, so can search larger databases (database with AlphaFold2 models of all proteins)

Foldseek Search		GITHUB SÖDING LAB STEINEGGER LAE
Queries		⑦ Search Settings
ATOM 866 N B ATOM 867 CA B ATOM 868 C B ATOM 870 CB B ATOM 877 N C ATOM 877 N C ATOM 878 CA C ATOM 879 C C ATOM 881 N T ATOM 882 CA T ATOM 883 C T ATOM 893 N C ATOM 893 N C ATOM 894 CA C CURL COMMAND PREDICT STRUCT PREDICT STRUCT	PHE A 111 11.187 -12.768 -6.000 PHE A 111 11.895 -11.516 -5.804 PHE A 111 13.203 -11.457 -6.592 PHE A 111 12.169 -11.360 -4.310 GLY A 112 13.543 -10.277 -7.094 GLY A 112 14.800 -10.107 -7.788 GLY A 112 14.816 -9.982 -9.286 TYR A 113 13.648 -10.024 -11.397 TYR A 113 13.648 -10.024 -11.929 TYR A 113 13.182 -11.355 -11.997 CYS A 114 13.052 -8.468 -13.148 CYS A 114 12.288 -7.406 -13.778 LOAD ACCESSION UPLOAD PDB UPLOAD PDB	Databases ® AlphaFold/UniProt50 v4 AlphaFold/Swiss-Prot v4 AlphaFold/Proteome v4 MGnify-ESM30 v1 PDB100 2201222 GMGCL 2204 Mode ® 3Di/AA Taxonomic filter

Reference

van Kempen M, Kim S, Tumescheit C, Mirdita M, Gilchrist CLM, Söding J, and Steinegger M., Foldseek: fast and accurate protein structure search, bioRxiv, 2022.

Sequence/Structure based search: Foldseek

https://search.foldseek.com/ search

- Combines sequence analysis and structure analysis using deep learning
- Much faster than other techniques, so can search larger databases (database with AlphaFold2 models of all proteins)
- Scored by E-value (probability of significance, lower is better)

≡	Foldse	ek Search 🎎					GITH	UB SÕI	DING LAB	STEINE	GGER LAB
ζ	Results	for Job: cB7mDXjd	TyiOlkUn	nl4nVOTHsZ1nv\	/hti52G[DEw					
Ð		100	•	200	300	4	00	500	600		700
છ	job.pdb VACC	INIA						AF-I1LI AF-A0AOROES AF-A0A AF-Q55DK2-F AF-Q55DK2-F	RPO-F1-model_v4 36-F1-model_v4 (0R0KT16-F1-mod E43-F1-model_v4	Protein kinase dor Slycogen syntha el_v4 Protein kina: Non-specific se	nain
Dat	tabase	Target	?	Scientific Name	Prob.	Seq. Id.	Score	E-Value	Query Pos.	Target Pos.	Alignme nt
afd	lb-proteome	Protein kinase domair <u>AF-I1LRP0-F1-model_v4</u>	n-cont	<u>Glycine max</u>	0.63	9.4	55	1.88e-1	493-720 (731)	29-251 (352)	=
		Glycogen synthase kin AF-P51136-F1-model v4	nase-3	Dictyostelium	0.41	9	48	6.12e-1	491-692 (731)	84-286 (467)	≡
		Uncharacterized prote AF-A0A0R0ESZ7-F1-mode	ein <u>el v4</u>	Glycine max	0.28	12.1	43	2.67e+0	469-544 (731)	73-150 (184)	=
		Protein kinase domair AF-A0A0R0KT16-F1-mode	n-cont <u>el v4</u>	Glycine max	0.28	8.3	43	1.31e+0	491-706 (731)	33-245 (348)	E
		Probable serine/threo	nine-p	Dictyostelium	0.28	18.5	43	3.91e+0	465-554 (731)	4-99 (737)	E
		Non-specific serine/th <u>AF-C6TE43-F1-model_v4</u>	reoni	Glycine max	0.23	7.3	41	1.55e+0	491-690 (731)	110-312 (420)	E
		Probable serine/threo	nine-p	Dictyostelium	0.23	9.5	41	8.00e+0	491-561 (731)	32-104 (942)	=
		AF-A0A3P7ELF9-F1-mode	ne/thr <u>I v4</u>	Wuchereria ba	0.21	8.1	40	2.67e+0	491-647 (731)	329-512 (682)	=

Analysing protein complexes

Inspecting protein interaction interfaces

- Many (most) proteins function as part of macromolecular assemblies
- Crystals are large arrays of protein molecules
 - Some interactions between adjacent molecules will be biologically meaningful
 - Other interactions will be *crystallisation artefacts* (don't occur in nature)
- How can we identify and characterise biologically meaningful protein interactions?

© Garland Science 2010

- PDBePISA server
- https://www.ebi.ac.uk/pdbe/ pisa/pistart.html
- Analyses the Gibbs free energy (ΔG) gained or lost by complex formation, plus the size and shape of the interaction

EMBL-EBI	Services Research Training About us
Protein Data in Europe	a Bank PDBePISA
Bringing Structure to I	Biology
	< Share 🧠 Feedback
 PISA links Disclaimer FAQ Visualisation Privacy Linking to PISA Data download Version log Publications PISA tutorial 2 Other links PDBeFold CCP4 CoorLib Rasmol Rastop Jmol Worldwide Protein Data Bank 	PDBCPISA (Proteins, Interfaces, Structures and Assemblies) Junch PDBFISA is an interactive tool for the exploration of macromolecular interfaces. With PDBETSA, you can: 2 Activate results interactively for structures uploaded as PDB or mmCIF files 2 Activate results interactively for structures uploaded as PDB or mmCIF files 3 rescribel quatermary structures (assemblies), their structural and therriaces and interfaces 9 orbable quatermary structures (assemblies), their structural and therriaces and interfaces formed by structural homologs. 9 search the PDB archive for particular interfaces formed by structural homologs. 9 search the PDS archive for particular interfaces formed by structural homologs. 9 symmetry number; 9 symmetry number; 9 cossible/buried surface area; 9 resence/absence of salt bridges and disulphide bonds; 9 resence/absence of salt bridges and disulphide bonds;
	We welcome your feedback! Please send any questions, comments, suggestions and bug reports using the FEEDBACK button from the top of the page. PISA queries may be launched from any web site by following these instructions.

• Analyse any structure from PDB

 EMBL-EBI
 Services
 Research
 Training
 About us

 Protein Data Bank in Europe
 PDBePISA

 Bringing Structure to Biology
 Image: Structure to Biology

 Image: Structure to Biology
 Image: Structure to Biology

 Im

Interfaces Monomers Assemblies

'DBe PISA v1.52 [20/10/2014]

- Analyse any structure from PDB
- Analysing *interfaces*
 - Extent of interaction
 - Number of hydrogen bonds, salt bridges and disulfide bonds
 - Amount of energy gained/lost by burying interface
 - Hiding residues from solvent
 - Suggests which interactions are biologically meaningful CSS score (not always correct)

								Interfa	aces 🖗 🛛 XML	View	Details	D	ownload	earch						
	##			Stru	cture 1		×		St	ructure 2				interface	Δ ⁱ G	Δ ⁱ G	N _{HB}	N _{SB}	N _{DS}	CSS
ld	NN	«»	Range	ⁱ N _{at}	ⁱ N _{res}	Surface Å ²		Range	Symmetry op-n	Sym.ID	ⁱ N _{at}	ⁱ N _{res}	Surface Å ²	area, Å ²	kcal/mol	P-value				
1	1	۲	Н	74	18	6228	0	D	x,y,z-1	1_554	83	23	10328	690.1	-1.3	0.499	13	6	0	0.00
	2	0	E	73	18	6150	0	Ą	-x-1,-y,z	2_455	77	22	11065	685.9	-0.9	0.543	12	8	0	0.00
	3	0	F	76	19	6154	٥	С	x,y,z	1_555	79	21	10358	680.6	-1.2	0.495	10	7	0	0.00
	4	0	G	72	18	6343	0	В	x,y,z	1_555	80	22	10262	677.6	-1.1	0.495	11	6	0	0.00

• Can view the interaction interface interactively

PISA Interface List.

Session Map (0) (id=729-OC-EEN) Start Interfaces Interface Search Monomers

Assemblies

Interfaces in PDB 3ogo crystal.

Space symmetry group: P 21 21 2. Resolution: 2.80 Å

STRUCTURE OF THE GFP:GFP-NANOBODY COMPLEX AT 2.8 A RESOLUTION IN SPACEGROUP P21212

									Interfa	ices 🖗 🛛 XML	View	Details	D	ownload	earch						
	#	##			Stru	cture 1		×		S	tructure 2				interface	Δ ⁱ G	Δ ⁱ G	N _{HB}	N _{SB}	N _{DS}	CSS
1	d N	IN	«»	Range	ⁱ N _{at}	ⁱ N _{res}	Surface Å ²		Range	Symmetry op-n	Sym.ID	ⁱ N _{at}	ⁱ N _{res}	Surface Å ²	area, Å ²	kcal/mol	P-value				
	1	1	۲	Н	74	18	6228	٥	D	x,y,z-1	1_554	83	23	10328	690.1	-1.3	0.499	13	6	0	0.000
		2	0	E	73	18	6150	٥.	A	-x-1,-y,z	2_455	77	22	11065	685.9	-0.9	0.543	12	8	0	0.000
		3	0	F	76	19	6154	٥	С	x,y,z	1_555	79	21	10358	680.6	-1.2	0.495	10	7	0	0.000
	:	4	\bigcirc	G	72	18	6343	0	В	x,y,z	1_555	80	22	10262	677.6	-1.1	0.495	11	6	0	0.000

Interface #1 in 30go//H:D

- Can view the interaction interface interactively
- Can view the details of the interaction
 - Handy list of hydrogen bonds

PISA Interface List.

	H	ydrogen	bonds	XML				Sa	lt bri	dges	XML		
##	Stru	ucture 1	Dist. [Å]	Structure	e 2	##	Str	ucture	e 1	Dist. [Å]	Str	ucture	e 2
1	H:SER	34[OG]	2.50	D:GLU 142[OE1]	1	H:ARG	36[NH1]	3.87	D:GLU	142[OE1]
2	H:ARG	36[NH1]	3.21	D:ILE 171[0]	2	H:ARG	36[NH2]	2.99	D:GLU	142[OE2]
3	H:ARG	36[NH1]	2.99	D:SER 175[0]	3	H:ARG	36[NH2]	2.89	D:GLU	142[OE1]
4	H:ARG	36[NH2]	2.89	D:GLU 142[OE1]	4	H:GLU	104[OE1]	2.94	D:ARG	168[NH1]
5	H:ARG	58[NH1]	3.65	D:GLU 172[0]	5	H:GLU	104[OE2]	3.12	D:ARG	168[NH1]
6	H:SER	60[N]	3.81	D:ASP 173[0]	6	H:GLU	104[OE2]	2.94	D:ARG	168[NH2]
7	H:SER	60[OG]	2.41	D:ASP 173[0]								
8	H:TYR	38[OH]	3.04	D:ARG 168[NH2]								
9	H:ASN	100[OD1]	3.56	D:TYR 145[N]								
10	H:GLU	104[OE1]	2.68	D:SER 147[N]								
11	H:GLU	104[OE1]	2.94	D:ARG 168[NH1]								
12	H:GLU	104[OE2]	3.12	D:ARG 168[NH1]								
13	H:GLU	104[OE2]	2.94	D:ARG 168[NH2]								

- Can view the interaction interface interactively
- Can view the details of the interaction
 - Handy list of hydrogen bonds
 - And list of which residues are buried (hidden from solvent) by the interaction interface

Se	ssion Map 🛞	(id=729-OC-EEN)
Start	Interfaces	Interface Search
	Monomers	
	Assemblies]
	STRUCTUR	E OF THE GFP:GFP-NANOBOD

Interfaces in PDB 3ogo crystal.

Space symmetry group: P 21 21 2. Resolution: 2.80 Å

RUCTURE OF THE GFP:GFP-NANOBODY COMPLEX AT 2.8 A RESOLUTION IN SPACEGROUP P21212

PISA Interface List.

						Interfa	ices 🔞	XML	View	Details	Do	ownload	earch						
	##		Stru	cture 1		×		Str	ucture 2	2			interface	Δ ⁱ G	Δ ⁱ G	N _{HB}	N _{SB}	N _{DS}	CSS
d	NN «»	Range	ⁱ N _{at}	ⁱ N _{res}	Surface Å ²	Range	Symmet	ry op-n	Sym.ID) ⁱ N _{at}	ⁱ N _{res}	Surface Å ²	area, Ų	kcal/mol	P-value				
1	1	Н	74	18	6228	≬ D		x,y,z-1	1_554	83	23	10328	690.1	-1.3	0.499	13	6	0	0.000
	2 〇	E	73	18	6150	۸ (م		-x-1,-y,z	2_455	77	22	11065	685.9	-0.9	0.543	12	8	0	0.000
	3 (F	76	19	6154	o C		x,y,z	1_555	79	21	10358	680.6	-1.2	0.495	10	7	0	0.000
	<u>4</u> O	G	72	18	6343	§ B		x,y,z	1_555	80	22	10262	677.6	-1.1	0.495	11	6	0	0.000
	33	H:SER	34	н	31.48	3 22	.17	-0.0	2	33	D:GLY	35		0.63	0.0	0		0.00	
	34	H:MET	35		0.00) 0	.00	0.0	0	34	D:ASP	36	2	3.04	0.0	0		0.00	
	35	H:ARG	36	HS	88.67	7 88	.08	-1.9	1	35	D:ALA	37	1	1.42	0.0	0		0.00	
	36	H:TRP	37		0.00) 0	.00	0.0	0	36	D:THR	38	7	1.76	0.0	0		0.00	
	37	H:TYR	38	н	46.25	5 44	.79	-0.1	.3	37	D:TYR	39	14	5.65	0.0	0		0.00	
	38	H:ARG	39		14.04	+ 0	.00	0.0	0	38	D:GLY	40		1.33	0.0	0		0.00	
	39	H:GLN	40		55.42	2 0	.00	0.0	0	39	D:LYS	41	6	9.66	0.0	0		0.00	
	40	H:ALA	41		25.98	3 0	.00	0.0	0	40	D:LEU	42		4.85	0.0	0		0.00	
	41	H:PRO	42		116.00	; 0	.00	0.0	0	41	D:THR	43	5	7.41	0.0	0		0.00	
	42	H:GLY	43		87.82	2 0	.00	0.0	0	42	D:LEU	44		6.18	0.0	0		0.00	
	43	H:LYS	44		142.93	3 0	.00	0.0	0	43	D:LYS	45	5	8.58	0.0	0		0.00	
	44	H:GLU	45		156.25	5 31	.40	-0.3	8	44	D:PHE	46		0.00	0.0	0		0.00	
	45	H:ARG	46		89.45	5 6	.16	-0.0	1	45	D:ILE	47	2	0.59	0.0	0		0.00	
	46	H:GLU	47		66.28	3 0	.00	0.0	0	46	D:CYS	48		0.98	0.0	0		0.00	
	47	H:TRP	48		83.49	48	.83	0.7	8	47	D:THR	49	7	6.33	0.0	0		0.00	
	48	H:VAL	49		0.00	0	.00	0.0	0	48	D:THR	50	7	2.72	0.0	0		0.00	
	49	H:ALA				0	.00		0	49	D:GLY	51	4	4.87	0.0	0		0.00	
	50	H:GLY	51		4.94	4 4	.94	0.e	8	50	D:LYS	52	14	8.11	0.0	0		0.00	
	51	H:MET	52		22.86	5 3	.78	0.0	5	51	D:LEU	53		1.55	0.0	0		0.00	
	52	H:SER	53		26.17	7 21	.48	0.2	6	52	D:PRO	54	2	4.33	0.0	0		0.00	
	53	H:SER	54		48.27	7 0	.15	-0.0	0	53	D:VAL	55		0.98	0.0	0		0.00	
	54	H: AL A	55		79.34	. 0	.00	0.0	0	54	D:PRO	56	1	0.55	0.0	ø		0.00	

- Can view the interaction interface interactively
- Can view the details of the interaction
 - Handy list of hydrogen bonds
 - And list of which residues are buried (hidden from solvent) by the interaction interface
- And can download the PDB file (structure) of the complex

PISA Interface List.

Session Map (Id=729-OC-EEN)
Start Interfaces Interface Search
Monomers
Assemblies
STRUCTURE OF THE GEP GEP.

Interfaces in PDB 3ogo crystal.

Space symmetry group: P 21 21 2. Resolution: 2.80 Å

STRUCTURE OF THE GFP:GFP-NANOBODY COMPLEX AT 2.8 A RESOLUTION IN SPACEGROUP P21212

								Inter	faces 🚱	XML	View	Detai	is	Download	Sea	rch						
	##			Stru	cture 1		×				Structure 2	2			i	nterface	Δ ⁱ G	Δ ⁱ G	N _{HB}	N _{SB}	N _{DS}	CSS
ld	NN	«»	Range	ⁱ N _{at}	ⁱ N _{res}	Surface /	Å ²	Range	Symm	etry op-n	Sym.IE) ⁱ N _a	ⁱ N _n	es Surface	Â ² a	area, Ų	kcal/mol	P-value				
1	1	۲	Н	74	18	6228	<u> </u>	D		x,y,z-1	1_554	83	23	3 1032	28	690.1	-1.3	0.499	13	6	0	0.000
	2	0	E	73	18	6150	• <u>•</u>	A		-x-1,-y,z	2_455	77	23	2 1106	55	685.9	-0.9	0.543	12	8	0	0.000
	3	0	F	76	19	6154	<u> </u>	C		x,y,z	1_555	79	21	1 1035	58	680.6	-1.2	0.495	10	7	0	0.000
		0	9	12	10	0545	·	D		х,у,2	1_000	00	21	2 1020	02	677.0	-1.1	0.495	11	0	0	0.000
			ATOM	10	288	N	GLN	н	2	-32	.681	26.4	405	-54.52	23	1.00	39.05	i i		N		
			ATOM	10	289	CA	GLN	I H	2	-33	.107	27.1	175	-55.76	98	1.00	58.43	1		C		
			ATOM	10	290	С	GLN	I H	2	-32	.760	28.0	558	-55.66	64	1.00	59.86	;		C		
			ATOM	10	291	0	GLN	н	2	-32	.635	29.3	254	-54.58	88	1.00	51.82			C)	
			ATOM	10	292	CB	GLN	н	2	-34	.605	27.0	844	-55.95	55	1.00	72.43			C		
			ATOM	10	293	CG	GLN	н	2	-35	.214	28.3	205	-56.75	50	1.00	43.04			C		
			ATOM	10	294	CD	GLN	н	2	-36	. 144	29.0	963	-55.96	3 2	1.00	72.43			C		
			ATOM	10	295	OF1	GUN	н	2	- 37	.023	29.	763	-56.42	26	1.00	55.72			0		
			ATOM	10	296	NF2	GLN	н	2	- 35	958	29.0	208	-54.58	81	1.00	57.70			N		
			ATOM	10	297	N	VAI	н	3	-32	664	29	258	-56.84	18	1 00	52 53			N		
			АТОМ	10	208	CA	VAL	н	7	-31	074	30	542	-56.90	10	1 00	12.55			Ċ		
			ATOM	10	200	c c	VAL		2	- 33		21	771	-56 50	27	1 00	27 42	, 1				
			ATOM	10	200		VAL	. II 11	2	- 32		21.0		- 50.50	00	1.00	31 00					
			ATON	10	201	CD CD	VAL		2		.955	51.5	312	-30.73	20	1.00	51.05					
			ATOM	10	301	CB	VAL	. н	3	-31	.421	30.	/54	-58.4:	33	1.00	36.56			C C		
			ATOM	10	302	CG1	VAL	. Н	3	-31	.941	29.0	682	-59.38	84	1.00	41.08			C		
			ATOM	10	303	CG2	VAL	. н	3	-31	.734	32.1	153	-58.93	31	1.00	25.64			C		
			ATOM	10	304	N	GLN	Н	4	-32	.010	32.0	561	-55.83	38	1.00	38.34			N		
			ATOM	10	305	CA	GLN	I H	4	- 32	.609	33.8	805	-55.17	71	1.00	34.03			C		
			ATOM	10	306	С	GLN	I H	4	-31	.593	34.9	930	-55.00	01	1.00	36.47			C		

 The *Monomers* page also has a handy tool to highlight differences between different copies of the same protein in the crystal structure

PISA Monomer List.

Monomers in PDB 30go crystal.

Space symmetry group: P 21 21 2. Resolution: 2.80 Å

STRUCTURE OF THE GFP:GFP-NANOBODY COMPLEX AT 2.8 A RESOLUTION IN SPACEGROUP P21212

				Inte	erfacing	g mono	mers 🔞) XML		
	##		Range	Class	Struc	ture		Surfac	e	∆G, kcal/mol
ld	NN	«»			N _{at}	Nres	^s N _{at}	^s N _{res}	Area, Å ²	
1	1	۲	A	Protein	1853	232	1050	221	11064.7	-216.7
	2	0	B	Protein	1803	225	1008	212	10261.5	-213.6
	3	0	C	Protein	1824	228	1017	215	10357.6	-213.4
	4	\bigcirc	D	Protein	1810	226	1006	213	10328.4	-210.2
			A	verage:	1822	227	1020	215	10503.0	-213.5
2	5	0	E	Protein	893	115	483	105	6149.8	-95.5
	6	0	F	Protein	893	115	485	104	6154.2	-95.7
	7	\bigcirc	G	Protein	901	116	491	106	6343.2	-96.5
	8	0	H	Protein	902	116	489	104	6227.9	-96.3
			A	verage:	897	115	487	104	6218.8	-96.0
3	9	0	[IPA]A:239	Ligand	4	1	4	1	199.5	
	10	0	[IPA]D:239	Ligand	4	1	4	1	198.0	
	11	0	[IPA]F:124	Ligand	4	1	4	1	198.7	
			A	verage:	4	1	4	1	198.7	
			View	Details	Downloa	ad Vie	w Unit Ce	I Dow	nload Unit Ce	I

 The *Monomers* page also has a handy tool to highlight differences between different copies of the same protein in the crystal structure

- The *Monomers* page also has a handy tool to highlight differences between different copies of the same protein in the crystal structure
- Also works for cryoEM structures
 - To analyse interfaces

This talk - Recap

- Representations of proteins
- Mapping properties onto proteins
- Accessing protein structures
- Software for viewing protein structures
- Analysing structural similarity
- Inspecting protein interfaces

Tomorrow: How do we determine protein structures?

