

Biochemistry of protein interactions: pull-downs, IPs and ELISA

Day 6: Monday 27th March

This talk

- Identifying and characterising protein interactions
 - Pull-downs
 - Co-immunoprecipitation
 - Western blots
 - ELISA

- Immobilise *bait* protein onto a resin
 - Pull-downs use purified bait protein

1. Load affinity resin with **bait**

- Immobilise *bait* protein onto a resin
 - Pull-downs use purified bait protein
- Wash away unbound bait

1. Load affinity resin with **bait**

2. Wash away unbound bait protein

- Immobilise *bait* protein onto a resin
 - Pull-downs use purified bait protein
- Wash away unbound bait
- Incubate the bait with a prey protein
 - Can be purified or as part of a complex mixture

1. Load affinity resin with **bait**

2. Wash away unbound bait protein

3. Add **prey** protein

- Immobilise *bait* protein onto a resin
 - Pull-downs use purified bait protein
- Wash away unbound bait
- Incubate the bait with a prey protein
 - Can be purified or as part of a complex mixture
- Wash away unbound prey proteins

1. Load affinity resin with **bait**

2. Wash away unbound bait protein

4. Wash away unbound prey

3. Add **prey** protein

- Immobilise *bait* protein onto a resin
 - Pull-downs use purified bait protein
- Wash away unbound bait
- Incubate the bait with a prey protein
 - Can be purified or as part of a complex mixture
- Wash away unbound prey proteins
- *Elute* bait and prey from resin and analyse

1. Load affinity resin with <mark>bait</mark>

5. SDS-PAGE

2. Wash away unbound bait protein

4. Wash away unbound prey

3. Add **prey** protein

Mapping interaction domains by GST pull-down

VERSITY OF

AMBRIDGE

Mapping interaction domains by GST pull-down

Mapping interaction domains by GST pull-down

Common affinity resins used for pull-downs

Resin	Тад	Pros	Cons
Glutathione (GSH)	GST	Cheap High affinity Low non-specific binding	Large protein tag may disrupt interaction
Ni ²⁺ or Co ²⁺	His ₆	Cheap Small tag	Low affinity (can be improved by using His ₈ or His ₁₀ tags) High non-specific binding
Amylose	Maltose binding protein (MBP)	Cheap	Very large protein tag Relatively low affinity
Streptavidin	Biotin	Extremely high affinity Highly specific Small tag	Need to biotinylate prey Non-specific binding to endogenously biotinylated proteins
Streptactin-XT	Strep-II	High affinity High specificity Small tag	Expensive

You can use agarose or magnetic resin for pull-downs

Agarose resin	Magnetic resin
To wash, collect beads by <i>centrifugation</i> (slow)	To wash, collect beads using a magnet (fast)
Higher binding capacity	Lower binding capacity
More manual handling so less reproducible*	Minimal manual handling so more reproducible
Low non-specific binding	Higher non-specific binding?
Cheap	More expensive

*Top tip: Use gel-loading tips or crushed P10 tips to avoid aspirating beads when washing

Immunoprecipitation (IP)

- Pull-down experiments where bait is captured using an antibody
 - Extremely high specificity and high affinity
- Prey proteins are co-immunoprecipitated (coIP'd) with the bait
- Often used with very complex prey mixtures (cell lysates or organ extracts)
- Usually paired with immunoblots (Western blots) to detect bait and prey
 - Allows detection of very low abundance proteins

Immunoprecipitation (IP)

- Incubate antigen-containing mixture with antibody
- Capture antigen:antibody complex, plus associated proteins, on resin (bead support)
 - Can use Protein A or Protein G resin, or a mixture (Protein A/G)
- Wash away unbound protein
- Analyse bound fraction (Western blot, mass spectrometry, etc.)

Image adapted from https://www.cytivalifesciences.com/en/us/news-center/tips-for-successful-immunoprecipitation-10001

Alternative IP protocols

- Use resin to pre-clear antigencontaining mixture
 - Reduce non-specific binding
- Capture the antibody with the resin before capturing the antigen
- Use an antibody against an *epitope tag* (e.g. myc, HA) or a protein tag (e.g. GFP)
- Use resins with capture antibodies (or nanobodies) covalently bound to the bead support
 - No cross-reactivity with eluted antibody in downstream analysis

(Some) Caveats of IPs

- IPs do not demonstrate direct binding
 - IPs are performed in 'crude' lysates, with lots of other proteins around
 - Indirect binding via membranes or other proteins
- IPs can be 'fragile', as minor changes in protocol can dramatically change results:
 - Buffer composition, preclearing, washes, ...
- Antibody-binding epitopes and partner-binding epitopes can overlap

Overlapping antibody/antigen binding sites

Overlapping antibody/antigen binding sites

Overlapping antibody/antigen binding sites

Western blots

- Electrophoretic separation
 - SDS-PAGE
- Transfer proteins to nitrocellulose or PVDF membrane
- Probe with primary and secondary antibodies
- Visualise by enhanced chemiluminescence or fluorescence

All of these steps can go wrong!

When westerns go bad...

- Separation:
 - Insufficient resolution

When westerns go bad...

- Separation:
 - Insufficient resolution
 - Running important bands off end of gel
 - Or cutting the wrong strips!

Western blot transfer

- Wet-tank transfer: slow but better for large proteins
- Semi-dry transfer: fast, but less efficient for large proteins and can 'overtransfer' small proteins

When westerns go bad...Transfer to the membrane

- Over-transfer of small proteins
 - Esp. with semi-dry blotters?
- Under-transfer of large proteins
- Air bubbles
 - Prevent protein transfer
 - We always use Ponceau S to check transfer

Probe with antibodies

- Commercial primary antibodies are often crap
 - Need extensive validation
- All antibodies can be non-specific
- Secondary antibodies detect heavy/light chains after IP
 - Can interfere with detection of band for protein of interest
 - Avoid by using protein A, biotin/streptavidin or isotype specific Abs

Visualisation

- Film has a low dynamic range
 - Easy to under-expose (all samples below limit of detection, LOD) or saturate image (all samples above LOD)
- Use digital camera with fluorescent secondary antibodies or chemiluminescence

Quantifying Western blots

• You can measure the relative intensity of bands on a Western blot to compare abundance

Quantifying Western blots

- You can measure the relative intensity of bands on a Western blot to compare abundance
- But only if:
 - Loading between lanes is equivalent
 - All protein in the sample has been transferred onto the membrane
 - The antibody has stained the target in each well evenly
 - The amount of background signal in each well is constant
 - The signal intensity goes up linearly with increasing target protein

Reliable Western blot quantitation

- Do the experiment more than once!
 - Change the order of samples on the gel
- Determine the signal response curve for your antibody
 - Blot a positive control sample at multiple different concentrations and measure response
- Don't use blotting of a single control protein to normalise the signal between different lanes

Why using a control protein is bad?

- Your treatment might change the abundance of the control protein
- The signal response curve for your control protein may not be linear (in fact it almost definitely isn't)
 - So twice the signal in the control lane doesn't mean twice the amount of sample loaded

• Quantitation of total protein loading is linear over a much larger scale

- Quantitation of total protein loading is linear over a much larger scale
- Can directly compare samples from different cells/tissues (where actin or GAPDH may be more/less abundant)

- Quantitation of total protein loading is linear over a much larger scale
- Can directly compare samples from different cells/tissues (where actin or GAPDH may be more/less abundant)
- Can normalise total protein before loading gel (*good*), or measure total loading after transfer (*better*)

- Quantitation of total protein loading is linear over a much larger scale
- Can directly compare samples from different cells/tissues (where actin or GAPDH may be more/less abundant)
- Can normalise total protein before loading gel (*good*), or measure total loading after transfer (*better*)
- Companies sell expensive total protein stains, but 0.01% Ponceau S in 1% acetic acid works just as well (and is very cheap!)

What's the take home

- If you think you might want to quantitate your Western blot, Ponceau S stain it and take an image before probing with antibodies
- Ponceau S staining also works well for coIPs (you can detect the bait protein)

Enzyme-linked immunosorbent assays (ELISAs)

- Use to detect and quantitate the presence of an antigen or antibody in a complex mixture
- Antigen/antibody complex are immobilised on a solid surface (96-well plate) and signal is detected via an enzymatic reaction (usually colourimetric)

Common types of ELISA assay

- Indirect ELISA assays:
 - Coat plate with the antigen (Ag)
 - Detect Ag with a primary antibody (1° Ab)
 - Amplify signal using enzyme-conjugated 2° Ab
 - E.g. Measure antibodies in serum to confirm prior exposure to a pathogen

Common types of ELISA assay

- Indirect ELISA assays:
 - Coat plate with the antigen (Ag)
 - Detect Ag with a primary antibody (1° Ab)
 - Amplify signal using enzyme-conjugated 2° Ab
 - E.g. Measure antibodies in serum to confirm prior exposure to a pathogen
- Sandwich ELISA assays:
 - Coat plate with 1° Ab against Ag
 - Incubate with Ag
 - Detect captured Ag with a second 1° Ab
 - Amplify signal using enzyme-conjugated 2° Ab
 - E.g. Detect HCG in pregnancy tests

Image: ThermoFisher Scientific

Quantitating an ELISA

- Need to perform a **standard curve**:
 - Measure signal generated by a series of known concentrations of antigen/antibody
 - Plot this (and fit a curve)
 - Use equation of standard curve to determine the concentration of antigen/antibody in the unknown (experimental) samples

Standard concentration (pg/ml)

ELISAs

- Pros:
 - Simple, cheap and scalable
- Cons:
 - Need specific purified antibody (or antigen)
 - Needs optimisation for each antigen/antibody pair

2. Analyte capture

3. Detection antibody

4. Streptavidin-enzyme conjugate

5. Substrate addition

6. Analysis and calculation

This talk

- Identifying and characterising protein interactions
 - Pull-downs
 - Co-immunoprecipitation
 - Western blots
 - ELISA

Tomorrow: Techniques to quantify the affinity of protein interactions

