

Protein Purification Part 2

Day 4: Thursday 23rd March

Continuing from Yesterday

- In Part 1 we learnt about:
 - Lysis techniques
 - Affinity chromatography including affinity tags and resins
- In Part 2 we will learn about:
 - Other chromatography techniques
 - Size-exclusion
 - Ion exchange
 - HIC and others
 - Chromatography equipment
 - The dos and don'ts of good chromatography

Why might you need to do a 2-step purification?

• Isn't my protein pure enough after affinity chromatography?

Why might you need to do a 2-step purification?

- Isn't my protein pure enough after affinity chromatography?
- Possibly not, other protein contaminants can interfere with subsequent experiments
 - Tomorrow we'll discuss how to evaluate this

Why might you need to do a 2-step purification?

- Isn't my protein pure enough after affinity chromatography?
- Possibly not, other protein contaminants can interfere with subsequent experiments
 - Tomorrow we'll discuss how to evaluate this
- Also, there might be components in our buffer we need to remove
 - Although dialysis is one approach, 2-step purification is another

Size Exclusion Chromatography

• Separates based on size

Size Exclusion Chromatography

- Separates based on size
- Large proteins elute first
- Smaller ones are trapped in the resin and elute later

Size Exclusion Chromatography

- Separates based on size
- Large proteins elute first
- Smaller ones are trapped in the resin and elute later

• The chromatogram:

- The chromatogram:
 - Sample injection

- The chromatogram:
 - Sample injection
 - Void volume, V₀

- The chromatogram:
 - Sample injection
 - Void volume, V₀
 - Separation range
 - Large (aggregates) first

- The chromatogram:
 - Sample injection
 - Void volume, V₀
 - Separation range
 - Large (aggregates) first
 - Well-resolved proteins

- The chromatogram:
 - Sample injection
 - Void volume, V₀
 - Separation range
 - Large (aggregates) first
 - Well-resolved proteins
 - Small molecules

- The chromatogram:
 - Note this is a simple "isocratic" flow
 - One buffer, running continuously, no gradient, no elution buffer

• Different pore sizes to separate different proteins

• Small molecules able to enter the pores

• Different pore sizes to separate different proteins

1. Ferritin	440 kDa
2. IgG	158 kDa
3. Albumin	66 kDa
4. Ovalbumin	44 kDa
5. Myoglobin	17 kDa

• Different pore sizes to separate different proteins

1. Ferritin	440 kDa
2. IgG	158 kDa
3. Albumin	66 kDa
4. Ovalbumin	44 kDa
5. Myoglobin	17 kDa

- For even bigger proteins
 - Superose 6 column

1. Thyroglobulin	660 kDa
2. Ferritin	440 kDa
3. Aldolase	160 kDa
4. Ovalbumin	44 kDa
5. Ribonuclease	14 kDa
6. Aprotinin	6.5 kDa

Types of Size Exclusion Chromatography

- Different column sizes for:
 - different amounts of protein
 - different resolution
 - different chromatography systems

Types of Size Exclusion Chromatography

- Different column sizes for:
 - different amounts of protein
 - different resolution
 - different chromatography systems

What if size doesn't separate my contaminants?

- Although SEC is excellent for removing <u>large</u> aggregates and exchanging <u>small</u> buffer components...
- ...sometimes the contaminants in our samples are the same size
- So we use different chromatography techniques to separate these

• Separates based on charge

© https://www.intechopen.com/chapters/44033

• Separates based on charge

© https://www.intechopen.com/chapters/44033

- Separates based on charge
- Anion and cation exchange

- Separates based on charge
- Anion and cation exchange
- How do I know what charge my protein is?

- Separates based on charge
- Anion and cation exchange
- How do I know what charge my protein is?
- Using ProtParam as described on Day 2

My protein charge

- Protparam calculates a theoretical pl
- This is the pH where your protein is uncharged

Number of amino acids: 510 Molecular weight: 57364.86

Theoretical pI: 6.37

Amino acid composition: Ala (A) 31 6.1%

AIG (A)	51	0.1/0
Arg (R)	34	6.7%
Asn (N)	30	5.9%
Asp (D)	35	6.9%
Cys (C)	9	1.8%
Gln (Q)	24	4.7%
Glu (E)	27	5.3%
Gly (G)	32	6.3%
His (H)	9	1.8%
Ile (I)	23	4.5%
Leu (L)	45	8.8%
Lys (K)	25	4.9%
Met (M)	11	2.2%
Phe (F)	16	3.1%
Pro (P)	34	6.7%
Ser (S)	32	6.3%
Thr (T)	33	6.5%
Trp (W)	7	1.4%
Tyr (Y)	18	3.5%
Val (V)	35	6.9%
Pyl (0)	0	0.0%
Sec (U)	0	0.0%

My protein charge

- Protparam calculates a theoretical pl
- This is the pH where your protein is uncharged
- Above this it is -ve, below it is +ve

My protein charge

- Protparam calculates a theoretical pl
- This is the pH where your protein is uncharged
- Above this it is -ve, below it is +ve

- For this protein we could do:
 - Cation exchange in buffer @ pH 5

OR

• Anion exchange in buffer @pH 8

- Using cation exchange:
 - positively charged protein binds the column
 - negatively charged protein flows through

Positively charged protein binds to negatively charged bead

Negatively charged protein flows through

- Using cation exchange:
 - positively charged protein binds the column
 - negatively charged protein flows through
 - Load the column in low [salt]

- Using cation exchange:
 - positively charged protein binds the column
 - negatively charged protein flows through
 - Load the column in low [salt]
 - Negative proteins don't bind

1 M

[NaCI]

0

Column volumes [CV]

© Sigma Aldrich

© technologyinscience.blogspot.com

- Using cation exchange:
 - positively charged protein binds the column
 - negatively charged protein flows through
 - Load the column in low [salt]
 - Negative proteins don't bind
 - Elute using increasing [salt]

- Using cation exchange:
 - positively charged protein binds the column
 - negatively charged protein flows through
 - Load the column in low [salt]
 - Negative proteins don't bind
 - Elute using increasing [salt]
 - Wash with high [salt]

UNIVERSITY OF CAMBRIDGE © Sigma Aldrich
• Hydrophobic interaction chromatography

- Hydrophobic interaction chromatography
 - Separates based on hydrophobicity

Cytochrome c

Yellow colors indicate hydrophobic residues.

RNAse A

Lysozyme

α-chymotrypsin

Hydrophobic interaction chromatography

÷Η

Separates based on hydrophobicity
Elute using salt but this time
Start in high [salt]

Proteins separated in order of increasing surface hydrophobicity

Salt concentration

- Hydrophobic interaction chromatography
 - Separates based on hydrophobicity
 - Elute using salt but this time
 - Start in high [salt]
 - Separate with decreasing [salt]

Proteins separated in order of increasing surface hydrophobicity

- Hydrophobic interaction chromatography
 - Choice of resins

- Hydrophobic interaction chromatography
 - Choice of resins
 - Increasing hydrophobicity for different separation

Μ

1000

800

600

200

400

300 ml

Chromatography Equipment

- Manual equipment gravity columns
- Simple liquid handling peristaltic pumps
- Automated systems high performance liquid chromatography
 - Range of instruments from simple to complex
 - Range of suppliers
- All do essentially the same thing, pump liquid through a column

Manual equipment – gravity columns

- Best when using loose resin
- Manually load resin into columns
- Can run via gravity alone
 - You used these yesterday

Manual equipment – gravity columns

- Best when using loose resin
- Manually load resin into columns
- Can run via gravity alone
 - You used these yesterday
- Come in a range of sizes depending on the size of your prep and how much protein you have

• Come in a range of styles/models

Peristaltic pump for chromatography

- Can connect peristaltic pumps to:
 - gravity columns
 - small pre-packed columns

Peristaltic pump for chromatography

- Can connect peristaltic pumps to:
 - gravity columns
 - small pre-packed columns
- Need to:
 - manually collect elution
 - ensure sample/buffer doesn't run out

• Sample Injection

- Sample Injection
 - Your protein sample will be in a syringe in position 3
 - When the valve is set to LOAD, your sample can be loaded into the loop

- Sample Injection
 - Your protein sample will be in a syringe in position 3
 - When the valve is set to LOAD, your sample can be loaded into the loop
 - When the valve is set to INJECT, your sample (that is now in the loop) will be injected onto the column

- Components
 - The system we'll be using has
 - a "carousel" fraction collector

• computer control

Automated systems – AKTA Pure

AKTA Chromatography Systems

Start

Other Chromatography Systems

Pharmacia (old AKTA)

Agilent Technologies

Bio-Rad

© Agilent, SRA Instruments, © BioRad, © Amersham Pharmacia

- These systems and the associated columns are very sensitive to:
 - Particulates/aggregates

- These systems and the associated columns are very sensitive to:
 - Particulates/aggregates
 - Filter all buffers and samples

- These systems and the associated columns are very sensitive to:
 - Particulates/aggregates
 - Filter all buffers and samples
 - Air bubbles

- These systems and the associated columns are very sensitive to:
 - Particulates/aggregates
 - Filter all buffers and samples
 - Air bubbles
 - Degas buffers, keep bottles topped up
 - Careful protocols when injecting samples

- These systems and the associated columns are very sensitive to:
 - Particulates/aggregates
 - Filter all buffers and samples
 - Air bubbles
 - Degas buffers, keep bottles topped up
 - Careful protocols when injecting samples
 - High pressure

- These systems and the associated columns are very sensitive to:
 - Particulates/aggregates
 - Filter all buffers and samples
 - Air bubbles
 - Degas buffers, keep bottles topped up
 - Careful protocols when injecting samples
 - High pressure
 - Compression of the column resin is bad
 - Include pressure limit settings in protocols

Cleaning columns and safe storage

- After a chromatography run equilibrate your column back into:
 - Sterile-filtered (milli-Q) water, then
 - Ethanol, store in 20% ethanol
- Regularly clean the column with 0.2M NaOH
 - 0.2M NaOH will clean the column but is very corrosive so don't leave the column in this for any length of time
 - Either inject small volumes or use the Clean-In-Place (CIP) protocols
 - For this see your handbook or the relevant column datasheet

Protein Purification – Part 2

- Today we will learnt about:
 - Other chromatography techniques
 - Size-exclusion
 - Ion exchange
 - HIC and others
 - Chromatography equipment
 - The components and how to inject sample
 - The dos and don'ts of good chromatography

Questions?

Then let's do some SEC

