

Protein expression systems

Day 1: Monday 20th March

Proteins are polymers of amino acids

- Protein sequence is encoded in genes
- Three nucleotides encode each amino acid

Proteins are polymers of amino acids

- Protein sequence is encoded in genes
- Three nucleotides encode each amino acid
- Genetic code is degenerate: 20 naturally occurring amino acids but 64 triplex codons
 - Genetic code identical in many organisms but not all

			Second Base					
			U	С	А	G		
First Base		U	UUU UUC Phe UUA UUG Leu	UCU - UCC UCA - Ser UCG -	UAU UAC UAA UAA UAG - STOP	UGU UGC - Cys UGA - STOP UGG - Trp	U C A G	
	Base	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC - His CAA CAA - GIn	CGU - CGC CGA CGG - Arg	U C A G	Thirc
	First	A	AUU AUC AUA AUG — Met or Start	ACU - ACC ACA ACG - Thr	AAU AAC AAA AAA AAG	AGU - Ser AGC - Arg AGA - Arg	U C A G	Base
		G	GUU GUC GUA GUG	GCU – GCC GCA – Ala GCG –	GAU GAC GAA GAA GAG GIu	GGU GGC GGA GGG	U C A G	

Why study proteins?

- Proteins are the engines of life, responsible for many of the interactions and chemical reactions that sustain cells and organisms
- Understanding the structure and interactions of proteins can tell us about their functions
- Biochemical studies of function require highly purified components (proteins)
 - Many proteins are expressed at low abundance in their native context

This talk

- Expression vectors and the basics of molecular cloning
- Expression systems:
 - Bacteria
 - Mammalian cells
 - Others (Yeast, insect cells, plants, cell-free)

Expression vectors

- Expression vectors contain a gene of interest (GOI) that encodes your protein of interest (POI)
- The vector also contains regulatory elements (e.g. promoters) that ensure your **GOI** is expressed within the expression organism
- Vectors often have a selectable markers (e.g. antibiotic resistance) so you can select for expression organisms containing the vector
- The most common expression vector is the **plasmid**

Plasmids

- Small circular segments of DNA that can self-replicate within organisms, independently of the genome
- Bacterial plasmids are formed of double-stranded DNA
- In nature, plasmids enable the horizontal transfer of genetic material (including antibiotic resistance)

Plasmids

- Plasmids replicate within bacteria
 - Requires an origin of replication
- Generally for molecular biology we use *Escherichia coli* to amplify our plasmids
- Plasmids can be purified from away from *E. coli* chromosomal DNA using simple chemistry
 - Silica resins = midiprep kits
- Introducing a plasmid into a bacteria is called *transformation*

Plasmids for molecular biology

- Components:
 - Origin of replication
 - Selection marker(s)
 - Promoter(s)
 - Other DNA regulatory elements
 - Multiple cloning site(s)
 - Tags

Origin of replication (*ori*)

- Promotes binding of the DNA replication machinery to copy the plasmid (replicon)
 - Proteins or RNA
- Bacterial origins of replication control the *copy number* of the plasmids
 - How many plasmid molecules per bacteria, from <10 to >700!
- The pcDNA3.1 vector has the **pUC** *ori,* which is *high copy number*

Origin of replication (*ori*)

- pcDNA3.1 also has the *ori* of the polyomavirus SV40
 - Can be replicated as an *episome* in the nucleus of mammalian cells transformed with the SV40 large T-antigen (e.g. HEK293T cells)
- And pcDNA3.1 has f1 *ori* for replicating single stranded DNA that can be packaged into phage particles (e.g. M13)

Origin of replication (*ori*)

- You can co-transform multiple different plasmids into the one *E. coli*
- But bacterial origins of replication can *compete* for the same regulatory factors, leading to plasmid instability
 - Need to choose plasmids from different compatibility groups

Common Vectors	Copy Number ⁺	ori	Incompatibility Group	Control
pUC	~500-700	pMB1 (derivative)	А	Relaxed
pBR322	~15-20	pMB1	А	Relaxed
рЕТ	~15-20	pBR322	А	Relaxed
pGEX	~15-20	pBR322	A	Relaxed
pCoIE1	~15-20	CoIE1	А	Relaxed
pR6K	~15-20	R6K*	С	Stringent
рАСҮС	~10	p15A	В	Relaxed
pSC101	~5	pSC101	С	Stringent
pBluescript	~300-500	ColE1 (derivative) and F1**	А	Relaxed
pGEM	~300-500	pUC and F1**	А	Relaxed

Table: Addgene (https://blog.addgene.org/plasmid-101-origin-of-replication)

Selection markers

- Allow cells with/without the plasmid to be distinguished
- For bacteria, often genes that encode antibiotic resistance
 - Antibiotic will kill all bacteria that lacking the plasmid (*lethal selection*)
- pcDNA3.1 has the β-lactamase (*bla*) gene for resistance to ampicillin
 - Other common selection antibiotics are chloramphenicol and kanamycin

- Promoters are the regions that control the expression of downstream (3') genes
 - Cis regulatory elements
- Represent the binding site for transcription factors and the RNA polymerase complex
 - These differ between organisms

- Promoters are the regions that control the expression of downstream (3') genes
 - Cis regulatory elements
- Represent the binding site for transcription factors and the RNA polymerase complex
 - These differ between organisms
- pcDNA3.1 has 5 different promoters!

- AmpR promoter (bacterial)
 - Low level constitutive expression of β -lactamase (ampicillin resistance)
- CMV promoter (mammalian)
 - Human cytomegalovirus immediate-early promoter, high level expression
- SV40 promoter (mammalian)
 - Constitutive expression
- T7 promoter (bacterial)
 - Constitutive expression in presence of T7 polymerase
- *lac* promoter (bacterial)
 - Constitutive expression in absence of the *lac* repressor (not used in pcDNA3.1)

- Different promoters determine when (which organism) genes will be expressed
 - AmpR promoter ensures constant production of β-lactamase in *E. coli*
 - CMV yields high levels of **GOI** transcription
 - SV40 promoter allows expression of neomycin resistance gene in mammalian cells (selection marker)
 - T7 promoter can be used with purified T7 RNA polymerase to make high yields of RNA for biochemistry

DNA regulatory elements

- Bacterial RNA polymerases will transcribe templates until they reach a **terminator** sequence
 - The same is true of the eukaryotic RNA polymerase II that makes mRNA
- Mammalian **poly(A) signals** include a sequence motif that promotes termination and polyadenylation of the transcript
- pcDNA3.1 poly(A) signals:
 - SV40 after SV40 promoter
 - Bovine growth hormone (bGH) after CMV promoter

Transcriptional enhancers/repressors

- pcDNA3.1 encodes a CMV enhancer, that acts in *trans* to promote recruitment of RNA polymerase
- Other mammalian vectors include splice sites or the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) to promote mRNA stability and export from the nucleus

Multiple cloning site (MCS)

- This is the region of the plasmid where the **GOI** is inserted
- Will have lots of restriction sites present only once in vector (Unique cutters)
- In between the transcriptional start site (promoter) and end site (terminator or poly(A) signal)

Cloning your GOI into the expression vector MCS

- For protein expression we usually clone the complementary DNA (cDNA), without introns, into the vector
- Need to have:
 - A ribosome binding site and translational start site
 - A stop codon
 - All protein elements *in frame* with your GOI

Ribosome binding sites and initiator methionine

- Protein translation is (usually) initiated at the Methionine codon (AUG)
- Initiation frequency depends upon the context of the AUG
- For efficient translation, need a ribosome-binding site
 - Mammalian expression: Kozak consensus sequence: ACCAUGG

Ribosome binding sites and initiator methionine

- Protein translation is (usually) initiated at the Methionine codon (AUG)
- Initiation frequency depends upon the context of the AUG
- For efficient translation, need a ribosome-binding site
 - Mammalian expression: Kozak consensus sequence: ACCAUGG
 - Bacterial expression: Shine/Dalgarno (SD) sequence: AGGAGGN₍₅₋₉₎AUG

Co-expression of multiple proteins from one vector

 For bacterial expression, you can encode multiple proteins by having multiple Shine/Dalgarno sequences and AUGs within one transcript (polycistronic message)

Co-expression of multiple proteins from one vector

- For bacterial expression, you can encode multiple proteins by having multiple Shine/Dalgarno sequences and AUGs within one transcript (polycistronic message)
- For mammalian expression, you can use viral internal ribosome entry sites (IRES) or translational stop-go sites (e.g. porcine teschovirus 2A) to encode multiple proteins off one transcript

Top Image: Addgene (https://blog.addgene.org/plasmids-101-multicistronic-vectors)

Cloning your GOI into the vector

- *Many* ways to clone your GOI into the plasmid of choice:
 - Restriction cloning
 - Gateway cloning
 - Gibson assembly
- Choice will be guided by:
 - Availability of restriction sites
 - Complexity of the cloning (simple cut-andpaste or complex assembly)
 - Available starting material

Restriction endonucleases

- Bacterial enzymes that defend against foreign DNA (e.g. bacteriophage) by degrading it
- Bind specific DNA sequences (restriction sites or recognition sequences)
- Usually cut both strands of DNA
- Often dimeric, cutting pallandromic sequences (*Type IIP*)
- Will often leave single-strand overhangs (sticky ends)

Restriction cloning

- 1. Uses *restriction endonucleases* to digest **insert** (containing GOI) and **backbone** (plasmid), leaves compatible **sticky ends**
- 2. Digested insert and backbone are isolated (Gels or PCR clean-up)
- 3. Insert and backbone are mixed, **ligated** using a DNA ligase (e.g. T4 bacteriophage DNA ligase), and used to **transform** bacteria

Gateway cloning

- Proprietary cloning system developed by Invitrogen
- Exploits lambda bacteriophage DNA integration/excision reactions and a toxic gene (cccB) to achieve very high cloning efficiency
- Use the BP reaction to insert GOI into an 'entry' vector
- Use the LR reaction to transfer GOI into a 'destination' vector

Gibson assembly

- Mixture of three enzymes:
 - 5' exonuclease to generate long single-strand overhands
 - Polymerase to fill in singlestrand 'gaps' when DNA strands anneal
 - Ligase to repair nicks in the DNA backbone
- Reactions are isothermic (single temperature)

Fully Assembled DNA

Gibson assembly

- Mixture of three enzymes:
 - 5' exonuclease to generate long single-strand overhands
 - Polymerase to fill in singlestrand 'gaps' when DNA strands anneal
 - Ligase to repair nicks in the DNA backbone
- Reactions are isothermic (single temperature)
- Can use for large and complex DNA assembly

Tags

- Adding tags can help you purify and detect your POI
- Common protein purification tags: His₆, glutathione S-transferase (GST), Strep-II, maltose binding protein, protein A
 - We'll talk more about these in lecture 3
- Many vectors encode tags
 - Need to clone GOI in frame with tag

atggctcatcatcaccatcaccaTATGgtgagcaagggcgaggagctgttcaccggggtggtgcccatc taccgagtagtagtggtagtggtATACcactcgttcccgctcctcgacaagtggccccaccacgggtag 1 - 5 - 10 - 15 Met Ala His His His His His His His His His 6 tag (non-cleavable)

Which plasmid is right for me?

- Copy number
 - High if doing DNA manipulation in *E. coli* for downstream expression in another vector
 - Lower if gene product(s) will be expressed in *E. coli* or might be toxic
- Selection markers
 - Unique (co-transformed plasmids or genome of host don't confer resistance to same antibiotic)
- Origin of replication
 - Ensure it's compatible if co-transforming plasmids
- Expression host
 - Promoter and terminator correct for your expression host organism
- Tags

Bacterial expression

- The cheapest and simplest laboratory-based system for recombinant protein expression
- Can give very high yields of recombinant protein
 - 100s of mg per L of culture
- GOI generally encoded on an expression plasmid
- Doesn't support most posttranslational modifications

- Developed in the 1980s by Bill Studier and colleagues
- Exploits the highly active RNA polymerase of T7 bacteriophage
 - Make RNA >8-times faster than *E. coli* RNA polymerase
 - Recognises a specific promoter
- pET (and derivative) systems use T7 polymerase to transcribe the GOI

- T7 polymerase is encoded by the λDE3 lysogen, which is chromosomally integrated in DE3 bacteria like BL21(DE3)
- T7 polymerase expression is under the control of the *lac* promoter
- Expression from *lac* promoter is suppressed by *lac* repressor (encoded by bacterial *lacl* gene) that binds the *lac* operator (*lac* 0)
- Isopropyl-β-D-thiogalactopyranoside (IPTG) induces expression by preventing the *lac* repressor from binding the *lac* operator

 There is low level leaky expression of T7 polymerase via the lac promoter

- There is low level leaky expression of T7 polymerase via the lac promoter
- The T7 lysozyme binds to T7 polymerase and inhibits its activity,
 - Encoded on plasmid pLysS (weak expression), pLysE (strong expression), or on bacterial chromosome (LysY)
- T7 lysozyme prevents the polymerase expressing GOI before IPTG induction

Expression from T7 promoter is specific

 No expression of GOI in 'normal' bacterial cells that don't contain DE3 lysogen expressing T7 polymerase

Induce expression during exponential (log) phase growth

- *E. coli* divide by fission

 One mother cell divides into two daughter cells *E. coli* grows in culture exponentially until all nutrients are exhausted

 Divide every ~20-40 min
 Most metabolically active during the exponential (log) phase
- Best to induce expression with IPTG in late log phase
 - pET system is so powerful, after induction bacteria make few proteins except POI

Timetable of 'typical' bacterial protein expression

- Day 1:
 - Transform DE3 bacterial with plasmid and incubate on selection plates overnight at 37°C
- Day 2:
 - Inoculate one or more small-scale (5 mL) starter cultures with single colonies from the plate and grow at 37°C overnight
- Day 3:
 - Inoculate large-scale (100 mL to 8 L) cultures with 1:1000 dilution of starter culture and grown at 37°C to an OD₆₀₀ of ~0.8–1.2
 - Induce with 0.2–1.0 mM IPTG
 - Grow for a further 2–16 hours before harvesting by centrifugation

Optimising protein folding

- Many mammalian proteins fold poorly in bacteria
 - Can be improved by dropping growth temperature to 22°C before induction
- Can also try co-expressing chaperones (e.g. GroEL and GroES) or inducing chaperone expression (add 1% ethanol to growth medium)
- Some bacterial cell lines are optimised to help protein folding
 - ActicExpress express proteins at low temperatures (12°C)
 - Origami cells mutations in redox proteins to enhance disulfide bond formation

Bacterial expression of disulfide-bonded proteins

- The *E. coli* cytoplasm is a reducing environment
- The periplasm is an oxidising environment that contains disulfide isomerases (Dsb proteins)
- You can add the PelB leader sequence to your GOI and it will be targeted to the *E. coli* periplasm, allowing disulfide bond formation
 - Optimal for nanobody expression

Optimising protein expression

- Can use bacterial strains that encode tRNAs for 'rare' codons (common in mammals but not *E.coli*)
 - pRIL/pRARE or Rosetta/Rosetta2 cells
- Recent studies show nucleotide sequence positions 7–15 (amino acids 3–5) have a major effect upon recombinant *E. coli* protein expression
 - Translation initiation is a dominant factor in level of protein expression
 - Can boost protein expression by optimising first few amino acids of the sequence

Mammalian expression

- Many mammalian proteins have posttranslational modifications (PTMs): Phosphorylation, glycosylation, ...
 - Especially true for important secreted mammalian proteins such as antibodies, that have glycosylation and multiple disulfide bonds
- Lots of large, multi-domain proteins fold poorly in bacterial cells
- Can use large-scale mammalian tissue culture to express cells
- Can express both secreted and cytoplasmic proteins

Mammalian expression systems

- Adherent cells
 - HEK293T
 - CHO
- Suspension cells
 - Freestyle 293F
 - Expi293
- Both used extensively in industry and academia
- Suspension cells allow greater cell density
 - Better for cytoplasmic proteins

Expression systems for mammalian cells

- Transient transfection
 - Protein encoded on a plasmid
 - Cells are transfected and express protein for short period of time
- Stable cell lines
 - Expression cassette is stably incorporated into eukaryotic genome
 - POI can be expressed constitutively or under control of inducer
- Vector needs to have eukaryotic transcription/translation signals!

Large-scale transient transfection

- Many cell biologists uses lipid-based transfection reagents to introduce plasmids into cells
 - E.g. FuGene, TransIT-LT1, Lipofectamine
- These can be prohibitively expensive for large-scale transfection
- High transfection efficiency can be obtained using branched polyethylenimine (PEI) in some cells lines like HEK293T
 - PEI is very cheap!

Expressing cytoplasmic proteins with PTMs: CERT

- We needed to express a phosphorylated protein (CERT) for an assay
 - Measure dephosphorylation via a viral protein complex
- Used transient transfection of Freestyle 293F cells
 - Transfected 100 mL of cells with DNA+PEI, incubated for 72 hours before harvesting
- Purified cytoplasmic protein in presence of phosphatase inhibitors
- Very high efficiency purification of phosphorylated protein (mg/L of culture)

Making stable cell lines

- Stable plasmid transfection
 - Transfect with plasmid encoding GOI as-per transient transfection
 - Select for stable (genomic) incorporation of plasmid using selection marker:
 - E.g. Geneticin (G-418), hygromycin, puromycin
 - Random incorporation and expression levels
 - Can get very high expression via clonal selection

Making stable cell lines

- Stable plasmid transfection
 - Transfect with plasmid encoding GOI as-per transient transfection
 - Select for stable (genomic) incorporation of plasmid using selection marker:
 - E.g. Geneticin (G-418), hygromycin, puromycin
 - Random incorporation and expression levels
 - Can get very high expression via clonal selection
- Transposase-based genomic incorporation
 - Transfect with plasmid encoding GOI plus selection marker, flanked by transposase inverted terminal repeats
 - Co-transfect with helper plasmid(s) that encode transposase
 - Select using similar markers as above
 - High efficiency genomic incorporation and consistent highlevel expression

Inducible mammalian expression using doxycycline

- Controls protein expression using the tetracycline repressor from Gram-negative bacteria
 - TetR binds tetracycline or derivatives (including **doxycycline**) and the tet responsive element
- Two different types of regulation:
 - Tet-Off: Protein expressed in the **absence** of doxycycline
 - Tet-On: Protein expressed in the **presence** of doxycycline
- Tet-On systems are popular for protein expression
 - Tight regulation of expression (low leaky expression)
 - Low levels of doxycycline required for induction
 - Need constitutive expression of Tet-On protein

Piggybac transposase system

- Allows consistent high-level protein expression in suspension mammalian cell culture
- Transfect cells with:
 - Plasmid encoding GOI flanked by transposase inverted repeats
 - Plasmid encoding reverse tetracycline transactivator (rtTA) for Tet-On expression
 - Plasmid encoding piggybac transposase

Piggybac transposase system

- Allows consistent high-level protein expression in suspension mammalian cell culture
- Transfect cells with:
 - Plasmid encoding GOI flanked by transposase inverted repeats
 - Plasmid encoding reverse tetracycline transactivator (rtTA) for Tet-On expression
 - Plasmid encoding piggybac transposase
- Select stable cells within two weeks
 - Very consistent genome incorporation
- About 8-fold higher expression than transient transfection with PEI (personal observation)

Stable versus transient transfection

System	Pros	Cons
Transient	 Quick Can express many different proteins from one maintenance flask Easy to try lots of different constructs (start of project) 	 Need to make DNA for each transfection Expression levels can be variable
Stable	 Can get very high levels of expression (g/L culture) Reproducible expression 	 Slow to establish lines Need to maintain separate cell lines for each different protein you're expressing

Expressing secreted proteins

- Many important mammalian proteins are extracellular
 - Either secreted or have extracellular (luminal) domains
- Can express in mammalian cells by encoding a secretion signal in the expression plasmid
 - At amino terminus of the protein
- Purify expressed protein from the culture medium
 - High purity!

Signal Peptide	Amino acid sequence	
Secrecon	MWWRLWWLLLLLLWPMVWA	
Mouse IgKVIII	METDTLLLWVLLLWVPGSTG	
Human IgKVIII	MDMRVPAQLLGLLLLWLRGARC	
CD33	MPLLLLPLLWAGALA	
tPA	MDAMKRGLCCVLLLCGAVFVSPS	
Consensus	MLLLLLLLLALALA	
Native	MLLLLLLGLRLQLSLG	

doi:10.1371/journal.pone.0155340.t001

Table: Güler-Gane et al. (2016) PLoS ONE 11: e0155340

Controlling N-linked glycosylation

- Secreted proteins can undergo extensive, complex glycosylation
- Glycans are flexible and heterogenous
 - Bad for structural studies (crystallisation)

Controlling N-linked glycosylation

- Secreted proteins can undergo extensive, complex glycosylation
- Glycans are flexible and heterogenous
 - Bad for structural studies (crystallisation)
- Endoglycosidase (Endo)H enzyme efficiently removes high-mannose glycans
- Can block complex processing of highmannose to more complex glycans
 - Glycosylation deficient cell lines: HEK293S GnTI⁻ or CHO-Lec1 cells
 - Drug treatment: Kifunensine

Other expression systems

• Yeast

• Eukaryotic expression system that is cheap and scalable, with relatively easy genetic modification. Allows some post-translational modifications although glycosylation is different to mammalian cells. Cells lysis can be challenging.

Insect cells

• Excellent for expression of large multi-component complexes. Proteolysis can be an issue and generating baculovirus (vector) stocks is time consuming. Different glycosylation patterns compared to mammalian cells

• Plants and algae

• Highly scalable and low cost, but technology isn't very mature and accessible

Cell-free

- Uses enriched lysates from higher eukaryotes (like wheat)
- Very quick (reactions take hours) and allows production of highly toxic proteins, but very expensive and not very scalable.

Which expression system should I use?

- If you don't need PTMs, always worth trying bacteria first because they are so cheap and quick
- If PTMs are required try **mammalian cell** culture or **yeast**
- If purifying secreted proteins that need native glycosylation, use **mammalian cell** culture
- If expressing cytosolic multi-component complexes, try **insect cell expression** or mammalian cells
- If only a tiny amount of protein is required, could try **cell-free** expression

This talk - Recap

- Expression vectors and the basics of molecular cloning
- Expression systems:
 - Bacteria
 - Mammalian cells
 - Others (Yeast, insect cells, plants, cell-free)

Tomorrow: What can we learn about a protein from its sequence?

