

Protein Structure Prediction and Using AlphaFold

Day 10: Friday 31st March

3D Structure Prediction

- Yesterday we learnt about experimental approaches to determine protein structure:
 - NMR
 - X-ray crystallography
 - Electron microscopy (cryo-EM)
- Today we learn about in silico approaches to predict structures:
 - Homology Modelling
 - Artificial Intelligence and AlphaFold
 - What AlphaFold can and can't do (yet)

Experimental Structures in the PDB

- Enormous and growing number of structures that have been experimentally determined
- These are freely available in the online Protein Data Bank and listed in UniProt
- If an experimental structure exists – USE IT!

Experimental Structures in the PDB

 These experimental structures have been a very rich source of information for structure prediction for decades

Experimental Structures in the PDB

- These experimental structures have been a very rich source of information for structure prediction for decades
- This approach is called Homology Modelling

Predicting a 3D structure

- Homology modelling has existed for a long time use a closely related known structure to predict a new one
 - Modeller
 - SwissModel
 - HHPred
 - FFAS
 - SCWRL

Predicting a 3D structure

- Homology modelling has existed for a long time use a closely related known structure to predict a new one
 - Modeller
 - SwissModel
 - HHPred
 - FFAS
 - SCWRL
- Ab initio modelling has been a huge challenge and actually stimulated an open competition called CASP

Critical Assessment of protein Structure Prediction (CASP)

- Experiment initiated by John Moult started in 1994
- Independent benchmark of ability to predict novel protein structures
- Targets ranked based on 'difficulty'
- Scored on accuracy and coverage of backbone prediction (GDT_TS)

How good is the prediction?

Predicting structures

• CASP outcomes and scoring

AlphaFold was a huge step forward

- DeepMind developed a deep learning approach to structure prediction for CASP13 (2016)
- Step-change in quality

CASP14 and AlphaFold2

- DeepMind completely redesigned their prediction pipeline
- Unparalleled accuracy
- Quality of the prediction was largely decoupled from sequence identity to homologues

Image: www.deepmind.com

- Powerful neural networks
 - Attention-based neural networks

- Powerful neural networks
 - Attention-based neural networks

- Protein sequences
 - Multiple sequence alignments
 - Interrogate co-evolution of residues

- Powerful neural networks
 - Attention-based neural networks

- Protein sequences
 - Multiple sequence alignments
 - Interrogate co-evolution of residues

- Protein structures
 - Identifying residue pairs that should be close to each other
 - Experience of what folded proteins 'look like'

- Powerful neural networks
 - Attention-based neural networks

- Protein sequences
 - Multiple sequence alignments
 - Interrogate co-evolution of residues

- Protein structures
 - Identifying residue pairs that should be close to each other
 - Experience of what folded proteins 'look like'

computers

Did Quake make AlphaFold happen?

Image: ID software Image:www.nextplatform.com

AlphaFold2 in a nutshell

 Kendrew Lecture 2021: <u>https://www.youtube.com/watch?v=jTO6odQNp90</u>

AF2 predictions of all proteins

- Teamed up with EBI to predict representative set of all known proteins (still ongoing...)
- Results for human and model organisms available already from Uniprot website

How reliable is your AF2 model?

- AF2 will always give you a structure
- But that doesn't mean it is right

How reliable is your AF2 model?

- AF2 will always give you a structure
- But that doesn't mean it is right
- You have to check the statistical plots and scores that are also generated

pLDDT Scores and Plot

- This is a per residue score on scale of 0 to 100
- Score above 70 is a confident prediction

pLDDT Scores and Plot

- This is a per residue score on scale of 0 to 100
- Score above 70 is a confident prediction
- Displayed as a coloured structure

pLDDT Scores and Plot

- This is a per residue score on scale of 0 to 100
- Score above 70 is a confident prediction
- Displayed as a coloured structure or a plot

PAE plots – Predicted Aligned Error

- This is a measure of confidence relative to other regions of the structure
- Low error is high confidence (blue)
- High error is low confidence (yellow)

PAE plots – Predicted Aligned Error

- This is a measure of confidence relative to other regions of the structure
- Low error is high confidence (blue)
- High error is low confidence (yellow)
- In this example:
 - Domains 1 and 2 confident relative to each other
 - Domains 1 and 2 not confident relative to domains 4 and 5

PAE plots – Predicted Aligned Error

Image: Janet Deane CCBY 4.0

How to judge an AF2 model

• To summarise, a high-confidence per-residue model can be low-confidence overall

What about proteins like this?

Predicted accuracy High→Low

• If you see something like this, can you learn anything at all?

What about proteins like this?

Predicted accuracy High→Low

Actually quite high confidence these regions are unstructured

Top Image: UniProt

Bottom image: Hay et al (2022) eLife, 11:e79855

Top Image: UniProt

Bottom image: Hay et al (2022) eLife, 11:e79855

Look at the PAE plot

Look at the PAE plot

Image: Janet Deane CC-BY 4.0

Look at the PAE plot

Image: Janet Deane CC-BY 4.0

Look at the PAE plot

 The predictions are only confident within domains NOT BETWEEN

In this case:

- This AF2 model is useful for:
 - Determining domain boundaries
 - Fold of individual domains

In this case:

- This AF2 model is useful for:
 - Determining domain boundaries
 - Fold of individual domains
 - You could then use these individual domains to search using DALI or FoldSeek to find structural homologues that may inform function

AF2 doesn't know about topology

AF2 doesn't know about topology

Image: Janet Deane CC-BY 4.0

AF2 doesn't know about topology

• Treat membrane-spanning models with caution...

AlphaFold Prediction

AlphaFold Prediction

Image: Hay et al (2023) J. Biol. Chem. 299:102750

AlphaFold Prediction

AlphaFold Prediction

Image: Hay et al (2023) J. Biol. Chem. 299:102750

Right image: McKie et al (2023) PNAS In press

AlphaFold Prediction EM structure

Image: Hay et al (2023) J. Biol. Chem. 299:102750

Right image: McKie et al (2023) PNAS In press

• Importantly, AF2 provided excellent starting models for these experimental approaches

Image: Hay et al (2023) J. Biol. Chem. 299:102750

Right image: McKie et al (2023) PNAS In press

AF2 is pretty good at single proteins...what about complexes?

- AF2 Multimer was developed to try and address this question
- Answer is mixed, again you have to know how to interpret the statistics of the models produced
- Two examples: CD1d-LIMP2

PTPRK-Afadin

- Lipid binding proteins: CD1d is like MHC-I, LIMP-2 has a lipid tunnel
- From literature they're predicted to interact
- AF2 predicts a consistent complex (all models agree)

• pLDDT plot

Image: Janet Deane CC-BY 4.0

• PAE plot

• PAE plot

• We knew that PTPRK binds Afadin but these are both BIG proteins

• In the lab, mapped this down to much smaller domains

• But AF2 Multimer models weren't good

• Experimentally mapped it down to smaller pieces

• AF2 Multimer models MUCH better!

(c)

CC

D2

PISA Query.

Submission Form
Structure Analysis
Opatabase Searches

AF2_complex_lain.pdb uploaded.

Coordinate file Choose File No file chosen

O PDB entry

Analysis: 2 amino acid chains in ASU

Cell parameters:							
A:	not given	Alpha:	not given				
B:	not given	Beta:	not given				
C:	not given	Gamma:	not given				

Upload

Crystallographic information not found. You may give the cell parameters and the space symmetry group in the fields above. You may also submit without crystal da

Interfaces	Monomers	Assemblies
		

PISA Interface List.

Interfaces in AF2_complex_lain.pdb

Hydrogen bonds XML							Salt brid	dges [XML	No disulfide bonds found
##	Stru	icture 1	Dist. [Å]	Structure 2	##	Stru	ucture 1	Dist. [Å]	Structure 2	No covalent bonds found
1	A:ARG	23[HH11]	1.77	B:GLU 179[OE2]	1	A:ARG	23[NE]	3.84	B:GLU 179[OE2]	
2	A:ARG	23[HH21]	2.15	B:ASP 118[0]	2	A:ARG	23[NH1]	2.73	B:GLU 179[OE2]	
3	A:ARG	25[HH22]	2.01	B:GLU 223[OE1]	3	A:ARG	23[NH1]	3.29	B:GLU 179[OE1]	
4	A:ARG	25[HH21]	2.16	B:GLU 223[OE2]	4	A:ARG	23[NH2]	3.75	B:ASP 118[OD2]	
5	A:GLN	30[HE22]	1.79	B:GLU 220[OE2]	5	A:ARG	25[NH2]	2.90	B:GLU 223[OE1]	
6	A:LYS	33[HZ3]	2.13	B:GLU 221[OE1]	6	A:ARG	25[NH2]	2.81	B:GLU 223[OE2]	
7	A:GLU	22[OE1]	2.07	B:ARG 225[HH11]	7	A:LYS	26[NZ]	3.45	B:GLU 223[0E2]	
8	A:GLU	22[OE2]	1.83	B:ARG 225[HH22]	8	A:LYS	33[NZ]	2.81	B:GLU 221[OE1]	
					9	A:GLU	22[OE1]	3.07	B:ARG 225[NH1]	
					10	A:GLU	22[OE1]	3.70	B:ARG 225[NH2]	
					11	A:GLU	22[OE2]	3.56	B:ARG 225[NH1]	
					12	A:GLU	22[OE2]	2.82	B:ARG 225[NH2]	

	H	ydrogen	bonds	XML			Salt brid	dges [XML		No disulfide bonds found
##	Stru	icture 1	Dist. [Å]	Structure 2	##	Stru	ucture 1	Dist. [Å]	Structur	e 2	No covalent bonds found
1	A:ARG	23[HH11]	1.77	B:GLU 179[OE2]	1	A:ARG	23[NE]	3.84	B:GLU 179	0E2]	
2	A:ARG	23[HH21]	2.15	B:ASP 118[0]	2	A:ARG	23[NH1]	2.73	B:GLU 179	0E2]	
3	A:ARG	25[HH22]	2.01	B:GLU 223[OE1]	3	A:ARG	23[NH1]	3.29	B:GLU 179	0E1]	
4	A:ARG	25[HH21]	2.16	B:GLU 223[OE2]	4	A:ARG	23[NH2]	3.75	B:ASP 118	OD2]	
5	A:GLN	30[HE22]	1.79	B:GLU 220[OE2]	5	A:ARG	25[NH2]	2.90	B:GLU 223	0E1]	
6	A:LYS	33[HZ3]	2.13	B:GLU 221[OE1]	6	A:ARG	25[NH2]	2.81	B:GLU 223	0E2]	
7	A:GLU	22[OE1]	2.07	B:ARG 225[HH11]	7	A:LYS	26[NZ]	3.45	B:GLU 223	0E2]	
8	A:GLU	22[OE2]	1.83	B:ARG 225[HH22]	8	A:LYS	33[NZ]	2.81	B:GLU 221	0E1]	
					9	A:GLU	22[OE1]	3.07	B:ARG 225	[NH1]	
					10	A:GLU	22[OE1]	3.70	B:ARG 225	NH2]	
					11	A:GLU	22[OE2]	3.56	B:ARG 225	NH1]	
					12	A:GLU	22[OE2]	2.82	B:ARG 225	NH2]	

• Our pulldowns using mutations based on the AF2 model validated the interface experimentally

A few caveats

• PDBePISA didn't predict this interface to be significant - but it was!

• AF2 renumbers your residues so they might no longer match the Uniprot entry – you can renumber your model using Coot

A:ARG	25[NH2]	2.81	B:GLU	223[OE2]
A:LYS	26[NZ]	3.45	B:GLU	223[0E2]

Renumber residues in Coot

Renumber residues in Coot

😴 WinCoot 0.9.8.1 EL		
<u>File Edit Calculate Draw Measures Me</u>	<u>/</u> alidate About Ligand	
🖹 🔍 Reset View 📃 Display Manager 🗕	● 8 [
у		
🕫 👘 Renumber Residue	e Range	×
Renumber Resid	ue Range of Molecule:	
0	K-D2\aligned_models\AF2_complex_Iain.pdb	
Chain ID: A Start Residue	End Residue	
N-terminus Apply Offset: 35	O Residue 228 to O Residue O C-terminus (inclusive	
	Apply & Cancel	

So, what is AlphaFold2 good for?

- Determining the fold of protein domain(s)
 - Identify potential functional homology
- Determining domain boundaries
 - Clone sensible constructs
- Protein:peptide complexes
 - And some protein:protein complexes

So, what is AlphaFold2 good for?

- Determining the fold of protein domain(s)
 - Identify potential functional homology
- Determining domain boundaries
 - Clone sensible constructs
- Protein:peptide complexes
 - And some protein:protein complexes
- AF2 models should always be:
 - Shown with their statistical plot
 - Tested experimentally

What AF2 isn't good at (yet!)

- Most protein:protein complexes
 - But gives testable hypotheses
- Predicting surface properties
 - OK but not perfect, interpret with caution

What AF2 isn't good at (yet!)

- Most protein:protein complexes
 - But gives testable hypotheses
- Predicting surface properties
 - OK but not perfect, interpret with caution
- Predicting ligands (Zn, haem, co-factors, drugs etc)
- Understanding topology, intracellular vs extracellular domains

What AF2 isn't good at (yet!)

- Most protein:protein complexes
 - But gives testable hypotheses
- Predicting surface properties
 - OK but not perfect, interpret with caution
- Predicting ligands (Zn, haem, co-factors, drugs etc)
- Understanding topology, intracellular vs extracellular domains
- Importantly, AF2 is not designed to test the effect of point mutations
 - Structure predictions rely on multiple sequence alignments and co-evolution
 - To understand point mutations you still need to manually inspect the structure

What AF2 isn't good at (yet!)

- Most protein:protein complexes
 - But gives testable hypotheses
- Dradicting curface properties

AlphaFold is being constantly developed and expanded It is likely several of these limitations will be overcome eventually

- Understanding topology, intracellular vs extracellular domains
- Importantly, AF2 is not designed to test the effect of point mutations
 - Structure predictions rely on multiple sequence alignments and co-evolution
 - To understand point mutations you still need to manually inspect the structure

Try it yourself

- You can access all the pre-calculated AlphaFold structures by DeepMind/EMBL-EBI:
 - <u>https://alphafold.ebi.ac.uk/</u>
- You can run AF2 yourself via the browser (Google Colab):
 - <u>https://colab.research.google.com/github/deepmind/alphafold/blob/main/n</u> <u>otebooks/AlphaFold.ipynb</u>

Try it yourself

- You can access all the pre-calculated AlphaFold structures by DeepMind/EMBL-EBI:
 - <u>https://alphafold.ebi.ac.uk/</u>
- You can run AF2 yourself via the browser (Google Colab):
 - <u>https://colab.research.google.com/github/deepmind/alphafold/blob/main/n</u> <u>otebooks/AlphaFold.ipynb</u>
- NOTE: if you want to run locally on your computer you need a very powerful computer (GPU with lots of RAM) and we recommend installing ColabFold not AlphaFold

