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3D Structure Prediction

* Yesterday we learnt about experimental approaches to determine
protein structure:
* NMR
e X-ray crystallography
* Electron microscopy (cryo-EM)

* Today we learn about in silico approaches to predict structures:

 Homology Modelling
* Artificial Intelligence and AlphaFold
 What AlphaFold can and can’t do (yet)
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Experimental Structures in the PDB

* Enormous and growing N ———
number of structures that
have been experimentally ==
determined

150000

Number of Entries

* These are freely available
in the online Protein Data
Bank and listed in UniProt
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Experimental Structures in the PDB

* These experimental
structures have been a
very rich source of
information for structure -
prediction for decades
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Experimental Structures in the PDB

* These experimental
structures have been a
very rich source of
information for structure -
prediction for decades
* This approach is called | -l emmmssssaasaEEEaiEil
Homo | ogy Mo d el | in g FELLLFFFS LSS FELFSFSEES c‘s’?f@éﬂf@@ N L L
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Predicting a 3D structure

* Homology modelling has existed for a long time — use a closely
related known structure to predict a new one
* Modeller
e SwissModel
* HHPred
* FFAS

* SCWRL




Predicting a 3D structure

* Homology modelling has existed for a long time — use a closely
related known structure to predict a new one
* Modeller
e SwissModel
* HHPred
* FFAS
* SCWRL

* Ab initio modelling has been a huge challenge and actually stimulated
an open competition called CASP




Critical Assessment of protein Structure Prediction (CASP)

* Experiment initiated by John Moult
started in 1994

* Independent benchmark of ability to
predict novel protein structures

e Targets ranked based on ‘difficulty’

* Scored on accuracy and coverage of
backbone prediction (GDT_TS)
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How good is the prediction?

Fold is As good as an
roughly experimental
right structure

0 60 90 100
GDT_TS
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Predicting structures

* CASP outcomes and scoring

‘IOO ............................................................................

Fold is As good as an 80 AScora above 90 .o v e
. | is considered roughly

roughly experimenta 70~ aquivalent to the —

right structure 60 experimentally ...

determined structure
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Global distance test
(GDT_TS; average)
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AlphaFold was a huge step forward

 DeepMind developed a deep
learning approach to structure
prediction for CASP13 (2016) [ —————

10 '
equivalent to the AlphaFold ol

60 experimentally ...
determined structure

e Step-change in quality

Global distance test
(GDT_TS; average)

|
2006 2008 2010 2012 2014 2016 2018 .
Contest year
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CASP14 and AlphaFold2

* DeepMind completely redesigned
their prediction pipeline {55t

__ AlphaFold 2~

* Unparalleled accuracy 89 s0... Soonsidered OUGhY
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How does AlphaFold2 do this?

MSA embedding Sequence-residue edges
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How does AlphaFol

d2 do this?

Genetics
—* search

* The only input
needed iS a — Pro;einfeiu‘egr:ce
sequence!

| Embed &

MSA embedding Sequence-residue edges

outer sum

Residue-residue edges

Confidence
Score

155

\_y Structure
module

— \\ Pairwise

% distances
X

3D structure
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How does AlphaFold2 do this?

MSA embedding Sequence-residue edges

 Powerful neural
Y. SpaE Residues —> Residues —> Score
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How does AlphaFold2 do this?

Sequence-residue edges

MSA embedding
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3D structure

Residue-residue edges

* Protein sequences
* Multiple sequence
alignments
* Interrogate co-evolution
of residues

Image: www.deepmind.com
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How does AlphaFold2 do this?

* Powerful neural e ==
networks o, ¢ s lp_ti: ’ “\ ﬂ.:-
e Attention-based | e ‘ / ‘
neural networks o L Lra
* Protein sequences * Protein structures
e Multiple sequence * |dentifying residue pairs that should
alignments be close to each other
* Interrogate co-evolution * Experience of what folded proteins
‘look like’

of residues
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CAMBRIDGE

Image: www.deepmind.com




How does AlphaFold2 do this?

* Powerful neural e W e
networks i Ay =, Inti . -l
. , ] | B * Very powerful
* Attention-based | e ‘ / ‘

eeeeeeee = computers

neural networks T | s

* Protein sequences * Protein structures
* Multiple sequence  |dentifying residue pairs that should
alignments be close to each other
* |nterrogate co-evolution * Experience of what folded proteins
‘look like’

of residues

UNIVERSITY OF
CAMBRIDGE

Image: www.deepmind.com




Did Quake make AlphaFold happen?
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Did Quake make AlphaFold happen?

Peak Double Precision (GFLOPs)
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AlphaFold2 in a nutshell

DeepMind

Highly accurate protein
structure prediction with

AlphaFold

John Jumper
AlphaFold lead, DeepMind

q
+ Corresponding authors: John Jumper (jumper@deepmind.c

e Kendrew Lecture 2021:
https://www.youtube.com/watch?v={TO60dQNp90
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https://www.youtube.com/watch?v=jTO6odQNp90

AF2 predictions of all proteins

* Teamed up with EBI to predict
representative set of all known
proteins (still ongoing...)

ete

| BLAST Align

UniProtKB - Q9Y2K1 (ZBTB1_HUMAN)
D help video N BLAST FAlign S)Format @ Addto basket @ Histc Add a pi n ' Feedback

\\\\\\\

e Results for human and model
organisms available already
from Uniprot website . —_—

vvvvvvvv
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How reliable is your AF2 model?

* AF2 will always give you a structure

e But that doesn’t mean it is right

UNIVERSITY OF
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How reliable is your AF2 model?

* AF2 will always give you a structure

e But that doesn’t mean it is right

* You have to check the statistical
plots and scores that are also
generated

pLDDT scores

UNIVERSITY OF
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pLDDT Scores and Plot

* This is a per residue score on scale of 0 to 100

* Score above 70 is a confident prediction

CAMBRIDGE

Model Confidence:

B Very high (pLDDT > 90)
Confident (90 > pLDDT > 70)
Low (70 > pLDDT > 50)

Very low (pLDDT < 50)

Image: UniProt



pLDDT Scores and Plot

* This is a per residue score on scale of 0 to 100

* Score above 70 is a confident prediction

* Displayed as a coloured structure

CAMBRIDGE

Model Confidence:

B Very high (pLDDT > 90)
Confident (90 > pLDDT > 70)
Low (70 > pLDDT > 50)

B Very low (pLDDT < 50)

Image: UniProt




pLDDT Scores and Plot

* This is a per residue score on scale of 0 to 100 Model Confidence:
B Very high (pLDDT > 90)
* Score above 70 is a confident prediction Confident (90 > pLODT > 70)

Low (70 > pLDDT > 50)

B Very low (pLDDT < 50)

* Displayed as a coloured structure or a plot

‘g * 100

801

60 -

40

20 pLDDT scores

0

UNIVERSITY OF

CAMBRIDGE Image: UniProt



PAE plots — Predicted Aligned Error

* This is @ measure of confidence relative to
other regions of the structure

e Low error is high confidence (blue)

* High error is low confidence (yellow)

(y) Joue uoiysod pajoadx3
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PAE plots — Predicted Aligned Error

* This is @ measure of confidence relative to
other regions of the structure

e Low error is high confidence (blue)
* High error is low confidence (yellow)

d

* In this example:

e Domains 1 and 2 confident relative to each
other

e Domains 1 and 2 not confident relative to
domains 4 and 5

(y) Joue uoiysod pajoadx3
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PAE plots — Predicted Aligned Error
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How to judge an AF2 model

* To summarise, a high-confidence per-residue model can be low-confidence
overall

() Jous uojysod pajoadx3
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What about proteins like this?

g
Afadin High — Low

* If you see something like this, can you learn anything at all?

CAMBRIDGE Image: UniProt



What about proteins like this?

uman wccuracy
Afadin High — Low

Actually quite high
confidence these
regions are
unstructured
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Look at the pLDDT plot

Predicted accuracy

: 100
High |
2 o
E 50_ B L (1 I N N e e e L U [ ) O U | s e
Q- -
Low
0 1 1 1
500 1000 1500

Top Image: UniProt
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Bottom image: Hay et al (2022) elife, 11:e79855
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Look at the pLDDT plot

* Clearly determine
domain boundaries

CC
1RAS T RAS FHA DIL PDZ CC F-actinLGN 1824
Afadin

500 | 1000 ' 1500

UNIVERSITY OF Top Image: UniProt

CAMBRIDGE Bottom image: Hay et al (2022) elLife, 11:e79855



Look at the PAE plot
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Look at the PAE plot T T
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Look at the PAE plot T 2 g
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Look at the PAE plot T 2 g

upeRy

§- 1 | 3
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In this case:

 This AF2 model is useful for:

* Determining domain boundaries

e Fold of individual domains 0

500 1000 1500

200 s

400 """
600
800

1k

Aligned residue

1.2k

1.4K

1.6K

Ak
0 200 400 600 800 1k 1.2k 1.4k 16k 1.8
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In this case:

 This AF2 model is useful for:

* Determining domain boundaries

e Fold of individual domains 0

500 1000 1500

200 [z

* You could then use these individual ©
domains to search using DALI or
FoldSeek to find structural
homologues that may inform .
function

Ak
0 200 400 600 800 1k 1.2k 1.4k 16k 1.8

800

1k

Aligned residue
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AF2 doesn’t know about topology

~B> UNIVERSITY OF
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AF2 doesn’t know about topology

Extracellular

B> UNIVERSITY OF
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AF2 doesn’t know about topology

Predicted
accuracy

High — Low

Image: DeepMind



Validate using experimental techniques

AlphaFold Prediction

#B> UNIVERSITY OF

%" CAMBRIDGE



Validate using experimental techniques

AlphaFold Prediction

UNIVERSITY OF
CAMBRIDGE Image: Hay et al (2023) J. Biol. Chem. 299:102750




Validate using experimental techniques

AlphaFold Prediction AlphaFold
Prediction

SAXS structure

. UNIVERSITY OF Image: Hay et al (2023) J. Biol. Chem. 299:102750
CAMBRIDGE Right image: McKie et al (2023) PNAS In press




Validate using experimental techniques

AlphaFold Prediction AlphaFold EM
Prediction structure

I UNIVERSITY OF Image: Hay et al (2023) J. Biol. Chem. 299:102750

Right image: McKie et al (2023) PNAS In press




Validate using experimental techniques

AlphaFold Prediction AlphaFold EM
Prediction structure

* Importantly, AF2 provided excellent starting
models for these experimental approaches

i UNIVERSITY OF Image: Hay et al (2023) J. Biol. Chem. 299:102750

CAMBRIDGE Right image: McKie et al (2023) PNAS In press



AF2 is pretty good at single proteins...what about complexes?

* AF2 Multimer was developed to try and address this question

* Answer is mixed, again you have to know how to interpret the
statistics of the models produced

* Two examples: CD1d-LIMP2

PTPRK-Afadin

@7 UNIVERSITY OF
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CD1d-LIMP2

* Lipid binding proteins: CD1d
is like MHC-I, LIMP-2 has a
lipid tunnel

* From literature they’re
predicted to interact

* AF2 predicts a consistent
complex (all models agree)

UNIVERSITY OF
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CD1d-LIMP2
e pLDDT plot

CD1d LIMP-2
100
80 A
60 A
|_
(o)
[a)
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o
40 A
—— Model 1
204 —— Model 2
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— Model 4
— Model 5
0 T T T T T T T T
0 100 200 300 400 500 600 700

Residue number
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CD1d-LIMP2
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CD1d-LIMP2

() Jowue uojysod pajoadx3

0 100 200 300 400 500 600

UNIVERSITY OF

CAMBRIDGE Image: Janet Deane CC-BY 4.0



PTPRK-Afadin

 We knew that PTPRK binds Afadin but these are both BIG proteins

Ig-like
domain

MAM domain

Fibronectin ce f{bﬁ
type-Ill domains TRAS | RAS FHA DIL PDZ &  CC F-actin LGN 1824
|

afadin [T _ T 1 T l:-]j

Juxtamembrane

domain Phosphatase

(D1) domain

Phosphatase
(D2) domain

UNIVERSITY OF

CAMBRIDGE Image: Janet Deane CC-BY 4.0



PTPRK-Afadin

* In the lab, mapped this down to much smaller domains

Ig-like
domain

MAM domain

Fibronectin ce f{bﬁ
' type-lll domains TRAS | RAS FHA DIL PDZ & CC | F-actin LGN 1824

afadin [T T T ] l:-]j

domal hosphatase

D1) domain

UNIVERSITY OF

CAMBRIDGE Image: Janet Deane CC-BY 4.0



PTPRK-Afadin

e But AF2 Multimer models weren’t good

A B C
Model 1
100

Afadin-CC | IR m

Model 1 - 3
Model 2 H g
Model3 2 ;] 3
Model 4 = PTPRK- 5
Model 5 ) ICD 2
=}

=

0 | T I I T |

0 10 20 30 40 50 80
Residus number

UNIVERSITY OF

CAMBRIDGE Images from: Hay et al (2022) eLife 11:79855




PTPRK-Afadin

* Experimentally mapped it down to smaller pieces

Ig-like MAM domain
domain
¢ Fibronectin ce -"ch}
) Py
y type-Ill domains TRAS | RAS FHA DIL PDZ &  [CC F-actin LGN 1824
afadin [T TR T TN [N ] |

Juxtamembrane
domain

Phosphatase
D1) domain

L

Phosphatasg
(D2) domai

—
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PTPRK-Afadin

e AF2 Multimer models MUCH better!

Afadin-CC PTPRK-D2

1 ] Afadin-CC | [m
I 3

. g
g ) T §
a PTPRK-D2 5
]

=]

0 =

L ] L ] 1 T T 1
0 20 400 50 100 150 200 250 300
Residue Number
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CAMBRIDGE Images from: Hay et al (2022) eLife 11:79855



PTPRK-Afadin

e AF2 Multimer models MUCH better!

CC

_®
%\w \},«‘;@

This was not enough — we needed to validate the
interface by making mutations and doing pulldowns

6@ K

Afadin-CC PTPRK-D2

1 ] Afadin-CC | [m
I 3

. g
g ) T §
a PTPRK-D2 5
]

=]

0 =

L ] L ] 1 T T 1
0 20 400 50 100 150 200 250 300
Residue Number
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CAMBRIDGE Images from: Hay et al (2022) eLife 11:79855



Using PDBePISA with AlphaFold Models

PDBePISA

* Upload AF2 model of PISA Query.

complex to PDBePISA

@ Submission Form @ Structure Analysis (O Database Searches

@ Coordinate file| Choose File | AF2_complex_lain.pdb Upload
y N

() PDB entry

#B> UNIVERSITY OF
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Using PDBePISA with AlphaFold Models

PISA Query.

© Submission Form @Structure Analysis (O Database Searches

AF2 complex_lain pdb uploaded.

@ Coordinate file| Choose File | No file chosen Upload

() PDB entry

€ Analysis: 2 amino acid chains in ASU

Cell parameters:

A: | not given‘ Alpha: ‘ not given|
B: | not given‘ Beta: ‘ not Qi\’9“|
C: | not given‘ Gamma: ‘ not given|

Crystallographic information net found. You may give the cell parameters and the space symmetry group in the fields above. You may also submit without crystal d:

‘ Interfaces || Monomers H Assemblies

I

- UNIVERSITY OF
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Using PDBePISA with AlphaFold Models

PISA Interface List.

Session Map @ (id=372-60-497)
Start | Interfaces | Interface Search |
lMonomers

Interfaces in AF2_complex_lain.pdb

Interfaces @ | XML | | View | ‘ Details | | Download H Search |

## _Structure1 x Structure 2. interface  A'G AG  Npyp Nsg Nps CSS
NN «» Range 'Ni 'N.. Surface A’ Range Ny 'N.. Surface A’ area, A’ kcalimol P-value
1 )] A 81 21 A797 0 B 96 29 13477 829.7 1.9 8.599 3 12 a 8.088
| View | | Details ‘ | Download || Search ‘

I
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Using PDBePISA with AlphaFold Models

Hydrogen bonds Salt bridges | xML No disulfide bonds found

#  Structure1  Dist.[A]  Structure 2 ##  Structure1  Dist.[A]  Structure2 0 covalentbondsfound
1 A:ARG 23[HH11] 1.77 B:GLU 179[ 0E2] | 1 A:ARG 23[ NE ] 3.84 B:GLU 179[ OE2]
2 A:ARG 23[HH21] 2.15 B:ASP 118[ 0 ]| 2 A:ARG 23[ NH1] 2.73 B:GLU 179[ OE2]
3 A:ARG 25[HH22] 2.81 B:GLU 223[ OE1] | 3 A:ARG 23[ NH1] 3.29 B:GLU 179[ OE1]
4 A:ARG 25[HH21] 2.16 B:GLU 223[ OE2] | 4 A:ARG 23[ NH2] 3.75 B:ASP 118[ 0D2]
5 A:GLN 30[HE22] 1.79 B:GLU 220[ OE2] | 5 A:ARG 25[ NH2] 2.90 B:GLU 223[ OE1]
6 A:LYS 33[ HZ3] 2.13 B:GLU 221[ OE1] | 6 A:ARG 25[ NH2] 2.81 B:GLU 223[ OE2]
7 A:GLU 22[ OE1] 2.07 B:ARG 225[HH11] | 7 A:LYS 26[ NZ ] 3.45 B:GLU 223[ OE2]
8 A:GLU 22[ OE2] 1.83 B:ARG 225[HH22] | 8 A:LYS 33[ NZ ] 2.81 B:GLU 221[ OE1]
9 A:GLU 22[ OE1] 3.87 B:ARG 225[ NH1]
10 A:GLU 22[ OE1] 3.70 B:ARG 225[ NH2]
11 A:GLU 22[ OE2] 3.56 B:ARG 225[ NH1]
12 A:GLU 22[ OE2] 2.82 B:ARG 225[ NH2]

. UNIVERSITY OF
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Using PDBePISA with AlphaFold Models

Hydrogen bonds Salt bridges | xML No disulfide bonds found

#  Structure1  Dist.[A]  Structure 2 ##  Structure1  Dist.[A]  Structure2 0 covalentbondsfound
1 A:ARG 23[HH11] 1.77 B:GLU 179[ 0E2] | 1 A:ARG 23[ NE ] 3.84 B:GLU 179[ OE2]
2 A:ARG 23[HH21] 2.15 B:ASP 118[ 0 ]| 2 A:ARG 23[ NH1] 2.73 B:GLU 179[ OE2]
3 A:ARG 25[HH22] 2.81 B:GLU 223[ OE1] | 3 A:ARG 23[ NH1] 3.29 B:GLU 179[ OE1]
4 A:ARG 25[HH21] 2.16 B:GLU 223[ OE2] | 4 A:ARG 23[ NH2] 3.75 B:ASP 118[ 0D2]
5 A:GLN 30[HE22] 1.79 B:GLU 220[ OE2] || 5 A:ARG 25[ NH2] 2.90 B:GLU 223[ OE1]
6 A:LYS 33[ HZ3] 2.13 B:GLU 221[ OE1] | 6 A:ARG 25[ NH2] 2.81 B:GLU 223[ OE2]
7 A:GLU 22[ OE1] 2.07 B:ARG 225[HH11] | 7 A:LYS 26[ NZ ] 3.45 B:GLU 223[ OE2]
8 A:GLU 22[ OE2] 1.83 B:ARG 225[HH22] | 8 A:LYS 33[ NZ | 2.81 B:GLU 221[ OE1]
9 A:GLU 22[ OE1] 3.87 B:ARG 225[ NH1]
10 A:GLU 22[ OE1] 3.70 B:ARG 225[ NH2]
11 A:GLU 22[ OE2] 3.56 B:ARG 225[ NH1]
12 A:GLU 22[ OE2] 2.82 B:ARG 225[ NH2]
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PTPRK-Afadin

* Our pulldowns using mutations based on the AF2 model validated the
interface experimentally

PTPRK-ICD pulidown

ToF ¥ K,
* Ty 1 = B T
FLEFETIT S kpa
1130
=
[ ———
- 55
- i
— —-----_35
-5

In the Not in the
interface interface
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Images from: Hay et al (2022) eLife 11:79855




A few caveats

* PDBePISA didn’t predict this interface to be significant - but it was!

Interfaces @ | XML | | View | ‘ Details | | Download H Search |

## _Structure1 x Structure 2. interface  A'G AG  Npp Nsg Nps [ CSS
NN «» Range 'Ni 'N.. Surface A’ Range Ny 'N.. Surface A’ area, A’ kcalimol P-value
fl_ ® A 81 21 A797 0 B 96 29 13477 829.7 1.9 8.599 3 12 a 8.088
| View | | Details ‘ | Download || Search ‘

* AF2 renumbers your residues so they might no longer match the
Uniprot entry — you can renumber your model using Coot

4

A:ARG 25[ NH2] 2.81 B:GLU 223[ OE2] / g
A:LYS 26[ NZ ] 3.45 B:GLU 223[ OE2] ":c' B E &

vy
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Renumber residues in Coot

- UNIVERSITY OF

# CAMBRIDGE

<+ WinCoot 0.9.8.1 EL
File B=:i¥ Calculate Draw Measures Validate About Ligand
= ¥, Bond Colours... I%r -
.~ Bond Parameters...
Aa Change Chain IDs...
| Copy Molecule...

Copy Fragment...
®", mMap Colour... »
= Map Parameters...

33 Merge Molecules...

2 Replace Residue...

&2 Replace Fragment...

€ Renumber Residues...

" Restraints...

7= Skeleton Parameters »

D Residue Info...
®" Background Colour...

Settings...
. Preferences...




Renumber residues in Coot

-
File Edit Calculate Draw Measures Validate About Ligand

[1 @) ResetView [ Display Manager =& .

@ Renumber Residue Range

Renumber Residue Range of Molecule:

0 ...K-D2\aligned_models\AF2_complex_Iain.pdb

ChainID: A ¥

Start Residue End Residue . .
® N-terminus O Readuel. 28 = O Resmluel (® C-terminus (inclusive)

Apply Offset: |35|

Apply | ¥ cancel |




So, what is AlphaFold2 good for?

o
OOOO

* Determining the fold of protein domain(s)
* |dentify potential functional homology

cc
TrAS| RAS FHA DIL PDZ &  CC F-actin LGN 824

* Determining domain boundaries
 Clone sensible constructs

* Protein:peptide complexes o -
* And some protein:protein complexes
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So, what is AlphaFold2 good for?

o
OOOO

* Determining the fold of protein domain(s)
* |dentify potential functional homology

cc

° Determlnlng domaln boundarles am"HAs RAS FHA DIL PDZ &  CC F-actin LGN 824
 Clone sensible constructs

* Protein:peptide complexes o -
* And some protein:protein complexes

* AF2 models should always be:
* Shown with their statistical plot
* Tested experimentally
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What AF2 isn’t good at (yet!)

* Most protein:protein complexes
* But gives testable hypotheses

* Predicting surface properties
* OK but not perfect, interpret with caution
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* Predicting ligands (Zn, haem, co-factors, drugs etc)

* Understanding topology, intracellular vs extracellular domains




What AF2 isn’t good at (yet!)

* Most protein:protein complexes
* But gives testable hypotheses

* Predicting surface properties
* OK but not perfect, interpret with caution

* Predicting ligands (Zn, haem, co-factors, drugs etc)
* Understanding topology, intracellular vs extracellular domains

* Importantly, AF2 is not designed to test the effect of point mutations

 Structure predictions rely on multiple sequence alignments and co-evolution

e To understand point mutations you still need to manually inspect the
structure
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What AF2 isn’t good at (yet!)

* Most protein:protein complexes
* But gives testable hypotheses

L] L] L]
a nv-r\hlunl-unn ~—1 IV"F"\I\I\ nmnrannvrédFiAnec

AlphaFold is being constantly developed and expanded
It is likely several of these limitations will be overcome eventually

* Understanding topology, intracellular vs extracellular domains

* Importantly, AF2 is not designed to test the effect of point mutations

 Structure predictions rely on multiple sequence alignments and co-evolution

e To understand point mutations you still need to manually inspect the
structure
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Try it yourself

* You can access all the pre-calculated AlphaFold structures by
DeepMind/EMBL-EBI:

* https://alphafold.ebi.ac.uk/

* You can run AF2 yourself via the browser (Google Colab):

* https://colab.research.soogle.com/github/deepmind/alphafold/blob/main/n
otebooks/AlphaFold.ipynb



https://alphafold.ebi.ac.uk/
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb

Try it yourself

* You can access all the pre-calculated AlphaFold structures by
DeepMind/EMBL-EBI:

* https://alphafold.ebi.ac.uk/

* You can run AF2 yourself via the browser (Google Colab):

* https://colab.research.soogle.com/github/deepmind/alphafold/blob/main/n
otebooks/AlphaFold.ipynb

 NOTE: if you want to run locally on your computer you need a very
powerful computer (GPU with lots of RAM) and we recommend
installing ColabFold not AlphaFold



https://alphafold.ebi.ac.uk/
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
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